Contents

Independent Working Group vii
Foreword ix
Executive Summary x
Recommendations xii
 General Recommendations xii
 Specific Recommendations xii

1. Twenty-First-Century Threats & the Role of Missile Defense 1
 The Threat 1
 Rogue States 1
 Strategic Competitors 6
 Asymmetric Threats 9
 The Response 13
 The Dynamics of Comprehensive Defense 14
 First Steps 16
 Panel 1 Report 18

2. Requirements, Feasibility, & Timelines for Missile Defense 21
 R&D and Deployment 21
 Beyond the “Initial Deployment” 21
 Summary of Existing Programs 21
 Ground-based Missile Defense 23
 Sea-based Missile Defense 24
 Space-based Missile Defense 26
 Air-based Directed-energy Defenses 31
 Addressing the Ship-borne Scud Threat 32
 Bottom Line 33
 Panel 2 Report 34

3. Missile Defense & Space Relationships 37
 American Security and the Geopolitics of Space 37
 Present U.S. Space Strengths 37
 The Security Environment in Outer Space 37
 Commercial Activity in Space 44
 International Law and Space Geopolitics 45
 Next Steps toward Space-based Defense 46
 Conclusion 47
 Panel 3 Report 48
 Proposition A – The Lunar Landing Program 52
8. Conclusions & Recommendations

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Problem: An Existing and Escalating Threat</td>
<td>127</td>
</tr>
<tr>
<td>The Technical Solution: A Global Layered Missile Defense</td>
<td>127</td>
</tr>
<tr>
<td>with Sea- and Space-based Elements</td>
<td></td>
</tr>
<tr>
<td>Going Back to the Future</td>
<td>128</td>
</tr>
<tr>
<td>Enhancing Existing Sea-based Defenses</td>
<td>129</td>
</tr>
<tr>
<td>Augmenting U.S. Missile Defenses to Address the Ship-borne Scud Threat</td>
<td>130</td>
</tr>
<tr>
<td>Limiting Deployment of the Ground-based Missile Defense System</td>
<td>130</td>
</tr>
<tr>
<td>Committing to Space</td>
<td>131</td>
</tr>
<tr>
<td>Creating a Science and Technology Workforce for the Future</td>
<td>131</td>
</tr>
<tr>
<td>Broadening Missile Defense Collaboration with U.S. Allies</td>
<td>132</td>
</tr>
<tr>
<td>The Political Solution: Rectifying Outdated Mindsets, Misconceptions, and Mistaken Beliefs</td>
<td>133</td>
</tr>
<tr>
<td>Empowering the American Public</td>
<td>133</td>
</tr>
</tbody>
</table>

Appendixes

- Appendix A: State Missile Defense Resolutions 1
- Appendix B: Surrey and Space Technology Proliferation 7
- Appendix C: Letter from Ambassador Henry F. Cooper to Senator John Warner 12
- Appendix D: The Rise and Fall of Brilliant Pebbles 16
- Appendix E: The Campaign to “De-weaponize” Space 37
- Appendix F: Greatest Space Events of the 20th Century: The 60s 47
- Appendix G: Maldon Institute Memorandum on the World Peace Council 51
- Appendix H: Summary Statement on East Coast Missile Defense 55
- Appendix I: The Legacy of Brilliant Pebbles, Clementine, and Iridium for Future Space-Based Missile Defenses 60
- Appendix J: Proceedings of the Missile Defense Challenges for the Twenty-first Century Conference 69
- Appendix K: Executive Summary of Space and U.S. Security Net Assessment 84
Independent Working Group

Sponsors
American Foreign Policy Council
Claremont Institute
Department of Defense and Strategic Studies
Missouri State University
Free Congress Research and Education Foundation
George C. Marshall Institute
The Heritage Foundation
High Frontier
Institute for Foreign Policy Analysis
Institute of the North

Independent Working Group Co-Chairmen
Dr. Robert L. Pfaltzgraff, Jr.
Shelby Cullom Davis Professor of International Security Studies
The Fletcher School, Tufts University
President, Institute for Foreign Policy Analysis
Dr. William R. Van Cleave
Professor Emeritus
Department of Defense and Strategic Studies
Missouri State University

Members
Mr. Ilan Berman
Vice President for Policy
American Foreign Policy Council
Ambassador Henry E. Cooper
Chairman, High Frontier
former Director
Strategic Defense Initiative Organization
former Chief U.S. Negotiator to the Geneva Defense and Space Talks
Dr. Jacquelyn K. Davis
Executive Vice President
Institute for Foreign Policy Analysis
Mr. Daniel I. Fine
Research Associate
Massachusetts Institute of Technology
Dr. Robert Jastrow †
Chairman Emeritus of the Board of Directors
George C. Marshall Institute
Founding Director
Goddard Institute for Space Studies, NASA
former Chairman of the Board of Trustees
Mount Wilson Institute
Mr. Thomas Karako
Director of Programs
The Claremont Institute
Mr. Brian Kennedy
President
The Claremont Institute
Mr. Jeff Kueter
President
George C. Marshall Institute
Mr. Eric Licht
President, Coalitions for America
Senior Policy Analyst
Free Congress Research and Education Foundation
Mr. R. Daniel McMichael
Independent Consultant and Defense/Security Analyst
Secretary, The Carthage Foundation
Secretary, The Sarah Scaife Foundation
Mr. Kiron Skinner
Research Fellow
Hoover Institution on War, Revolution and Peace
Stanford University
Mr. H. Baker Spring
F.M. Kirby Research Fellow in National Security Policy
The Heritage Foundation
Mr. Mead Treadwell
Senior Fellow
Institute of the North
Professor Robert F. Turner
Co-Founder and Associate Director
Center for National Security Law
University of Virginia Law School
Vice Admiral J.D. Williams, USN (Ret.)
Williams Associates International, Inc.
former Deputy Chief of Naval Operations for Naval Warfare and Commander U.S. Sixth Fleet
Mr. Paul Weyrich †
Chairman and CEO
Free Congress Research and Education Foundation
Dr. Lowell Wood
Physicist
Lawrence Livermore National Laboratory
Visiting Fellow, Hoover Institution on War, Revolution and Peace, Stanford University
Commissioner
Commission to Assess the Threat to the United States from Electromagnetic Pulse (EMP) Attack

† deceased

Missile Defense, the Space Relationship, and the Twenty-First Century
Each of the Sponsors, Independent Working Group, and Project Advisors contributed their own time and energy to this project. Organization and production costs were underwritten by a grant from The Carthage Foundation to the Institute for Foreign Policy Analysis.

The views expressed by members of the Independent Working Group, as set forth in this Report, are not necessarily those of the sponsoring organizations or of the project advisors.
Foreword

The Independent Working Group (IWG) on Post-ABM Treaty Missile Defense and the Space Relationship was formed in 2002. Our goals are severalfold: (1) to examine the evolving threats to the United States, its overseas forces, allies, and coalition partners from the proliferation of ballistic missiles; (2) to examine missile defense requirements in the twenty-first century security setting; (3) to assess current missile defense programs in light of technological opportunities in the post-ABM Treaty world; and (4) to set forth general and specific recommendations for a robust, layered missile defense for the United States.

In pursuit of these objectives, the IWG has met several times a year. These meetings have provided an opportunity not only to analyze issues directly related to missile defense, but also to identify a large number of additional topics for discussion. The IWG includes members with technical expertise as well as participants familiar with the politics of missile defense. From these meetings drafts of sections 1 – 7 were produced, critiqued, revised, and refined for inclusion in this report. The report also presents general and specific recommendations in the executive summary and in section 8. In addition to the many plenary sessions, the IWG members organized panels for specific discussion of each of the sections and to add new ideas, perspectives, and insights. These panel summaries are included at the end of each section, together with the membership of each panel.

As this new update illustrates, the IWG report is intended as a living document, to be updated as necessary in order to provide a basis for informed consideration of missile defense needs. As with the first edition of the report, its contents will be reproduced in other formats in order to assure broader dissemination of the IWG’s work.

This updated 2009 report also contains additional graphics and charts designed to summarize and highlight important information. It furnishes cutting-edge analysis of the politics of missile defense, and it suggests existing and future technologies that could be used for a robust missile defense that includes space-based interceptors.

The 2009 report updates every section, including present and emerging threats, technological options and opportunities, timelines for missile defense R&D, the role of space, the politics and political arguments that have delayed a robust missile defense, the U.S. science and technology base, and the IWG’s conclusions and recommendations to provide the vision and realize the promise of effective missile defense to meet twenty-first century national and homeland security needs. Finally, two new appendices have been added to the Report. Appendix J contains the proceedings of the Missile Defense Challenges for the Twenty-first Century Conference, which was held in Dearborn, Michigan on July 24–26, 2008 and hosted by the Claremont Institute, one of the IWG sponsors. Appendix K is the Executive Summary of a study produced by the Institute for Foreign Policy Analysis (IFPA), also an IWG sponsor, entitled Space and U.S. Security Net Assessment. It surveys the current status of U.S. space activities, draws comparisons with other space-faring nations, and projects major trends into a 10-20-year timeframe to identify factors that may have important implications for the United States.
Missile Defense has entered a new era. With the initial missile defense deployments, the decades-long debate over whether to protect the American people from the threat of ballistic missile attack was settled – and settled unequivocally in favor of missile defense. What remains an open question is how the American missile defense system will evolve in the years ahead to take maximum advantage of technological opportunities to meet present and emerging dangers.

There is ample reason for concern. The threat environment confronting the United States in the twenty-first century differs fundamentally from that of the Cold War era. An unprecedented number of international actors have now acquired – or are seeking to acquire – ballistic missiles and weapons of mass destruction. Rogue states, chief among them North Korea and Iran, place a premium on the acquisition of nuclear, chemical, and biological weapons and the means to deliver them, and these states are moving rapidly toward that goal. Russia and China, traditional competitors of the United States, continue to expand the range and sophistication of their strategic arsenals at a time when the United States debates deep reductions in its strategic nuclear forces beyond those already made since the end of the Cold War and has no current modernization program. With a new administration, furthermore, the future development of even our limited missile defense system is in question. Furthermore, a number of asymmetric threats – including the possibility of weapons of mass destruction (WMD) acquisition by terrorist groups or the devastation of American critical infrastructure as a result of electromagnetic pulse (EMP) – now pose a direct challenge to the safety and security of the United States. Moreover, the number and sophistication of these threats are evolving at a pace that no longer allows the luxury of long lead times for the development and deployment of defenses.

In order to address these increasingly complex and multifaceted dangers, the United States must move well beyond the initial missile defense deployments of recent years to deploy a system capable of comprehensively protecting the American homeland as well as U.S. overseas forces and allies from the threat of ballistic missile attack. U.S. defenses also must be able to dissuade would-be missile possessors from costly investments in missile technologies, and to deter future adversaries from confronting the United States with WMD or ballistic missiles. America’s strategic objective should be to make it impossible for any adversary to influence U.S. decision making in times of conflict through the use of ballistic missiles or WMD blackmail based on the threat to use such capabilities.

These priorities necessitate the deployment of a system capable of constant defense against a wide range of threats in all phases of flight: boost, midcourse, and terminal. A layered system – encompassing ground-based (area and theater anti-missile assets) and sea-based capabilities – can provide multiple opportunities to destroy incoming missiles in various phases of flight. A truly global capability, however, cannot be achieved without a missile defense architecture incorporating interdiction capabilities in space as one of its key operational elements. In the twenty-first century, space has replaced the seas as the ultimate frontier for commerce, technology, and national security. Space-based missile defense affords maximum opportunities for interception in boost phase before rocket boosters have released warheads and decoys or penetration aids.

The benefits of space-based defense are manifold. The deployment of a robust global missile defense that includes space-based interdiction capabilities will make more expensive, and therefore less attractive, the foreign development of offensive ballistic missile technologies needed to overcome it. Indeed, the enduring lesson of the ABM Treaty era is that the absence of defenses, rather than their presence, empowers the development of offensive technologies that can threaten American security and the lives of American citizens. And access to space, as well as space control, is key to future U.S. efforts to provide disincentives to an array of actors seeking such power.

So far, however, the United States has stopped short of putting these principles into practice. Rather, the missile defense system that has been deployed so far provides extremely limited coverage. It is intended as a limited defense against a small, rogue-state threat scenario. Left unad-
dressed are the evolving missile arsenals of – and potential missile threats from – modernizing strategic competitors such as Russia and China as well as terrorists launching short-range missiles such as Scuds from off-shore vessels.

The key impediments to the development of a more robust layered system that includes space-based interdiction assets have been more political than technological. A small but vocal minority has so far succeeded in driving the debate against missile defense and especially space-based missile defense. The outcome has been that political considerations have by and large dictated technical behavior, with the goal of developing the most technologically sound and cost-effective defenses subordinated to other interests.

A symptom of this problem is the fact that, in spite of a commitment to protecting the United States from ballistic missile attack, little has been done to revive the cutting-edge technologies developed in the 1980s and early 1990s – technologies that produced the most effective, least costly ways to defend the U.S. homeland, its deployed troops, and its international partners from the threat of ballistic missile attack. The most impressive of these initiatives was Brilliant Pebbles. By 1992, that initiative – entailing the deployment of a constellation of small, advanced kill-vehicles in space – had developed a cheap, effective means of destroying enemy ballistic missiles in all modes of flight. Yet in the early 1990s, along with a number of other promising programs, it fell victim to a systematic eradication of space-based technologies that marked the closing years of the twentieth century and still impedes the development of the most effective missile defense today.

The current state of affairs surrounding missile defense carries profound implications for the safety and security of the United States, and its role on the world stage in the decades to come. Without the means to dissuade, deter, and defeat a growing number of strategic adversaries, the United States will be unable to maintain its status of global leader. Others that have failed or have consciously decided not to do so are relegated to inferior political status. A salient case in point is ocean navigation and exploration. The Chinese were the first to become preeminent in this retrospectively pivotal area during the early Ming dynasty. However, domestic politics – strongly resembling missile defense politics in the United States of the past several decades – allowed this great national lead to be dissipated, with historic consequences felt until the present day, a full half millennium later. The subsequent assumption by Portugal of this lead in space may indeed be pivotal to the basic geopolitical, military, and economic status of the United States.

In the twenty-first century, maintenance of its present lead in space may indeed be pivotal to the basic geopolitical, military, and economic status of the United States. Consolidation of the preeminent U.S. position in space akin to Britain’s dominance of the oceans in the nineteenth century is not an option, but rather a necessity, for if not the United States, some other nation, or nations, will aspire to this role, as several others already do. For the United States, space is a crucially important twenty-first century geopolitical setting that includes a global missile defense.

As American policy makers look ahead, new momentum and direction are needed in the pursuit of a truly global missile defense capability that incorporates space-based interdiction capabilities and addresses the current and emerging threats of the twenty-first century security setting.

This updated edition of the IWG Report first published in 2006 contains new information and takes account of accomplishments and challenges that have arisen in recent years. It also addresses such issues as costs and timelines, together with other topics directly related to missile defense such as the evolving threat environment. The updated report is intended as an educational tool for those who seek to understand more fully the national security implications of missile defense and the requirements for missile defense.

As the Independent Working Group prepared this report, many general and specific recommendations emerged from our research and discussions. These are summarized and prioritized here in order to answer the fundamental question that the IWG asked itself and which members of the IWG themselves have been asked many times: What should be done in light of the IWG critique and analysis contained in the report? Therefore, we provide a succinct list of recommendations whose purpose is to focus attention on missile defense requirements and provide a programmatic basis for action. The recommendations are designed to serve as an agenda that concisely sets forth what must be done, how it should be done, and who should do it if the United States is to deploy the robust, layered missile defense that will be essential for our national security in the years ahead. This report contains a detailed examination, including the background, analysis, supporting documentation, and conclusions on which our recommendations are based. It also contains a series of appendices that provide specific information about missile defense, together with detailed documentation on which our analysis, findings, and recommendations are based.
Recommendations

GENERAL RECOMMENDATIONS

- Make deployment of a multilayered missile defense an urgent national priority against the growing missile threat from hostile state and non-state actors to the United States, its deployed forces, and allies.
- Develop broad public recognition that this threat encompasses missiles launched against populations and infrastructures as well as nuclear detonations above the earth, resulting in an electromagnetic pulse (EMP) that could have devastating and potentially catastrophic consequences for America’s society, economy, and national security.
- Build broadly based national consensus for a robust layered defense that includes sea- and space-based intercept capabilities able to defend against the growing missile threat.
- Ensure that the urgency of the missile threat is reflected in new organizational structures for a missile defense program that breaks the existing bureaucratic mold.
- Raise the national profile of missile defense by direct involvement at the presidential level and by building greater bipartisan support in the U.S. Congress.
- Reaffirm and strengthen the U.S. commitment to primacy in space.
- Recreate and sustain the scientific and technology base including the workforce needed to assure U.S. primacy in space and missile defense.

SPECIFIC RECOMMENDATIONS

Limit Ground-based Missile Defense (GMD) Deployments

- Complete the GMD sites in Alaska and California and in Poland and the Czech Republic but do not further expand the number of ground-based sites. Instead, direct funding to sea-based and space-based missile defense in order to achieve maximum return on missile defense investment.

Expand Sea-based Defenses

- Proceed as quickly as possible to deploy the SM-2 Block IV to defend against a ship-borne Scud launched off the U.S. coast.
- Accelerate deployment of the sea-based missile defense based on the U.S. Navy Aegis Vertical Launch System (VLS) and the Standard Missile (SM) with the current SM-3 Block 1 program to provide late-midcourse and boost-phase interception. Anticipated cost would be an additional $100 million over current funding.
- Accelerate the U.S.-Japan SM-3 Block IIA missile program to provide interdiction capabilities beyond the SM-3 Block 1. An additional $300 million over three years would push initial operating capability forward by more than a year.
- Combine and extend existing DoD and NASA test range assets to provide an East Coast test range for missile defense testing of BMD-capable Aegis ships currently being deployed in the Atlantic Ocean, thereby implicitly providing a limited defense against ballistic missile threats to the East Coast. The West Coast test range already provides such an inherent defense to our West Coast. This would also be an early counter to the EMP threat.
- Revive the Brilliant Pebbles-era light-weight Advanced Technology Kill Vehicle (ATKV) to improve the current U.S.-Japanese SM-3 Block IIA interceptor and for other applications, such as a ground-based interceptor (GBI) with multiple independently targetable kill vehicles. This would produce velocities far more advantageous for boost-phase intercepts than are achievable by other SM-3 variants, and it would eliminate the costly plan now contemplated by the Missile Defense Agency (MDA) for a larger missile and new VLS configuration to attain a comparable capability.
- Integrate missile defense with homeland security plans to protect coastal cities and infrastructure such as key energy-producing and storage complexes.
• Equip additional U.S. vessels with the Aegis anti-missile system. Encourage U.S. allies equipped with Aegis/SM to do the same.

Develop and Deploy Space-based Defenses
• Initiate a streamlined development program building on Brilliant Pebbles (and advanced technologies produced since then) for space-based interceptors for boost-phase, midcourse, and terminal-phase interdiction.
• Within three years, test a space-based missile defense system, at an anticipated cost of $3-5 billion.
• Begin operating a space testbed for space-based interceptors that would be integrated into U.S. Strategic Command’s global architecture in three to five years.
• Using an event-driven procurement strategy, deploy one thousand Brilliant Pebbles interceptors with the goal of an initial capability within five years of a decision to move forward.

Reaffirm the U.S. Commitment to Space
• Invest in space-based technologies to protect existing space-based assets and commercial and national security uses of space.
• Because of the centrality of space to U.S. national security, reject efforts to counter U.S. primacy in space via restrictive legal regimes.

Strengthen Missile Defense Collaboration with Allies
• Encourage allied missile defense capabilities based on a suitable U.S.-allied division of labor, while strengthening allied participation, especially in sea-based and space-based missile defense.
• Identify allies’ technologies and assets that would speed the deployment of a global layered missile defense system.
• Facilitate international missile defense technology-sharing while safeguarding cutting-edge technologies.
• Ensure maximum interoperability, flexibility, adaptability, and affordability of U.S. and allied systems.
• Educate allied decision makers and their publics about the WMD/ballistic missile threat and the role of missile defense.

Develop New Organizational Structures for Space and Missile Defense
• Create a special task force with needed funding and political support, perhaps within the Defense Advanced Research Projects Agency (DARPA), to develop and test the space-based missile defense system. When possible, use scientists and engineers who worked on the Brilliant Pebbles program.
• Establish a special project initiative, again potentially within DARPA, to develop needed technologies and capabilities for U.S. space control, protection of space-based assets, situational awareness, and assured access to space.
• Assign responsibility, authority, and necessary resources to the U.S. Navy to develop, deploy, and operate the sea-based missile defense system.
• Given the inevitable technology overlaps and mission crossover applications within the proposed organizations, ensure formalized and frequent interactions and exchanges among the proposed organizational entities.
• Identify and increase the number of senators and congressmen who recognize the centrality of space to U.S. national security, including missile defense as well as the need to thwart proposed legal regimes such as the Space Preservation Act and other efforts to restrict U.S. primacy in space.
• Strengthen a congressional caucus or study group on space and missile defense to build support for U.S. space primacy, space control, and assured access as well as missile defense in general and space-based anti-missile systems in particular.
• Reorganize the National Science Foundation to revive student and faculty interest in space and defense technology.
• Because the Department of Defense’s (DoD’s) competence to manage innovative high technology programs has atrophied significantly, reorganize the military education system to increase the number of scientists and engineers in the uniformed military and civilian DoD workforce. This will require heightened focus on the physical sciences at our military undergraduate schools as well as incentives (pay and promotion) to military officers and civilian DoD officials to acquire advanced degrees in science and engineering.
• Create a vigorous, innovative, and sustainable science and technology workforce.
• Strengthen federal support and funding for physical science research and engineering. DoD science and technology (S&T) funding should constitute at least 3 percent of total defense spending.
• Increase funding of space security research to revive student and faculty interest in space and defense technology.
• Develop research funding solicitations and awards in missile defense-related S&T and support the missile defense component of space security research via advisory
and peer groups as part of a new missile defense science and technology collegial community.

- Increase S&T in university curricula to strengthen the U.S. science, technology, and engineering base and research on missile defense and space security technologies.

Educate the American Public in parallel with the steps outlined above:

- Expand the educational outreach program to inform the American public, Congress and America’s allies and friends about missile threats – particularly the EMP threat – and the benefits of missile defenses that must go beyond the capabilities of the current systems being fielded.

- Make clear that affordable, technologically mature sea- and space-based options are available which would supplement the current ground- and sea-based systems and provide the advantages inherent in a layered defense that ensures multiple interception opportunities and necessary protection.

- Embed missile defense as a post-9/11 homeland security priority at the local and state level.

- Strengthen state and local participation in space and missile defense education and security policy development consistent with Department of Homeland Security state-federal partnerships and the recognition of threats to the common defense.
Twenty-First-Century Threats &
the Role of Missile Defense

The Threat

Twenty-first century threats to the United States, its deployed forces, and its friends and allies differ fundamentally from those of the Cold War. An unprecedented number of international actors have now acquired – or are seeking to acquire – missiles. These include not only states, but also non-state groups interested in obtaining missiles with nuclear or other payloads. The spectrum encompasses the missile arsenals already in the hands of Russia and China, as well as the emerging arsenals of a number of hostile states.

The character of this threat has also changed. Unlike the Soviet Union, these newer missile possessors do not attempt to match U.S. systems, either in quality or in quantity. Instead, their missiles are designed to inflict major devastation without necessarily possessing the accuracy associated with the U.S. and Soviet nuclear arsenals of the Cold War.

The warning time that the United States might have before the deployment of such capabilities by a hostile state, or even a terrorist actor, is eroding as a result of several factors, including the continued proliferation and widespread availability of technologies to build missiles and the resulting possibility that an entire system might be purchased outright. Would-be possessors do not have to engage in the protracted process of designing and building a missile. They could purchase and assemble components, reverse-engineer a missile after having purchased a prototype, or immediately acquire a number of assembled missiles. Even missiles that are primitive by U.S. standards might suffice for a rogue state or terrorist organization seeking to inflict extensive damage upon the United States. As the Rumsfeld Commission pointed out in its 1998 report:

Under some plausible scenarios – including re-basing or transfer of operational missiles, sea- and air-launch options, and shortened development programs that might include testing in a third country – or some combination of these – the United States might well have little or no warning before operational deployment.

Rogue States

North Korea

In the years since the surprise launch of its three-stage Taepo Dong missile over Japan in August 1998, North Korea has made substantial advances in its ballistic missile capabilities and now possesses the largest ballistic missile force in the developing world, according to Jane’s Information Group. Pyongyang has engaged in extensive efforts to conceal the size and scope of its ballistic missile programs, though estimates suggest that it may have deployed as many as 1000 ballistic missiles, including some 600-800 Scud-type short-range rockets, between 150 and 200 medium-range No Dong missiles, and 50 other longer-range missiles.

In 2003, North Korea lifted its self-imposed 1999 moratorium on long-range missile testing. In July 2006, the Kim

1 See Appendix J and Appendix K for additional data on the threat as well as the space programs of other nations.
Jong-il regime fired a *Taepo Dong* 2 long-range missile as part of a series of missile tests. While the 2006 test failed 40 seconds after launch, it signified a considerable advance in the development of North Korea’s extended-range missile capability. The Congressional Research Service has indicated that the *Taepo Dong* 2’s design would allow it to deliver a 1,500-kilogram warhead to targets as far as 8,000 kilometers away. According to 2005 testimony by Vice Admiral Lowell Jacoby, USN (Ret.), former director of the U.S. Defense Intelligence Agency (DIA), Pyongyang’s *Taepo Dong* 2 missile “could deliver a nuclear warhead to parts of the United States in a two-stage variant and target all of North America with a three-stage variant.” He also stated that North Korea had achieved the ability to arm a missile with a nuclear device.

North Korea has had a declared nuclear capability since 2005. In 2008, North Korean officials admitted that 37 kilograms of plutonium had been produced at the Yongbyon reactor, enough for as many as nine nuclear weapons. American assessments suggest that the actual amount of plutonium produced is likely much higher and that as much as 60 kilograms could have been extracted. Based upon this judgment, North Korea may have as many as 15 nuclear weapons, though most estimates in the U.S. intelligence community place the number at around ten. The extent of North Korea’s uranium enrichment program is not well known, but Pakistani nuclear scientist Abdul Qadeer (A.Q.) Khan stated that he had provided uranium enrichment equipment to Pyongyang. In 2002, DPRK First Vice Foreign Minister Kang Sok-ju admitted that North Korea was...

9 Ibid., 12.

North Korea: *Taepo Dong* Missiles

<table>
<thead>
<tr>
<th>Missiles</th>
<th>Range (km)</th>
<th>Payload (kg)</th>
<th>Height (m)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taepo Dong 1</td>
<td>2000</td>
<td>750</td>
<td>27</td>
<td>operational</td>
</tr>
<tr>
<td>Taepo Dong 1slv</td>
<td>5000</td>
<td>750</td>
<td>32</td>
<td>development</td>
</tr>
<tr>
<td>Taepo Dong 2</td>
<td>6000-750</td>
<td>750</td>
<td>35</td>
<td>development</td>
</tr>
</tbody>
</table>
pursuing a uranium-enrichment program, the clear implication being that the program was meant for weapons production.15 An operational North Korean uranium program could have the capability to add as many as six additional nuclear weapons a year to Pyongyang’s arsenal.16 A resolution to the North Korean nuclear weapons dilemma has yet to be achieved, despite the various efforts to use the six-party talks and other efforts for this purpose.17

Iran

With the benefit of assistance from abroad, including North Korea and Pakistan, the Islamic Republic of Iran has moved forward with its ballistic missile program. Iran has had a demonstrated tactical ballistic missile capability since the 1980s, but in June 2003 it marked a major milestone when it deployed its 1,300-kilometer-range Shahab-3, capable of targeting Israel and Turkey, as well as U.S. forces in the Persian Gulf.18 Since then, Iran has begun “mass production” of the original Shahab-3 missile19, and commenced work on a number of Shahab variants.20 This work has yielded important dividends: in September 2007, Iran publicly unveiled a “new” medium-range ballistic missile, the Ghadr-1, at a military parade in Tehran. This missile, which Iran claims has a range of 1,800 kilometers, appears to be an extended-range variant of the Shahab-3.21 Subsequently, in November 2007, Iran carried out a test of its Ashoura missile, a 2,000-kilometer-range solid fuel variant of the Shahab.22

These steps are part of what U.S. officials believe is a growing emphasis in Tehran on the development of an intercontinental ballistic missile capability. As John Rood, then-acting assistant secretary of state for international security and nonproliferation, told Congress in May 2007, “The In-

17 The members of the six-party talks are Japan, Russia, China, South Korea, North Korea, and the United States. The goal of the talks has been to dismantle Pyongyang’s nuclear weapons infrastructure and materials in exchange for economic aid and security guarantees.

18 Since the 1979 Islamic Revolution, Tehran has possessed two military forces: its regular standing army, the Artesh, and the Pasdaran, an elite paramilitary organization that serves as the Iranian regime’s principal point of contact with terrorist groups like Hezbollah, Hamas, and the Palestinian Islamic Jihad. The transfer of the Shahab 3 into the Pasdaran, in lieu of the Artesh, suggests that Iranian missile technologies could find their way into terrorist hands as part of Tehran’s ongoing sponsorship of terrorist activities.

Intelligence Community assesses that Iran would be able to develop an ICBM capable of reaching the United States and all regions of Europe before 2015 if it chose to do so. And, I would point out that Iran has acquired ballistic missiles from North Korea in the past and note the possibility that it could do so again in the future, potentially acquiring missiles with even longer ranges.\(^{23}\) As a result of these advances, it is likely that Iran could field an intercontinental ballistic missile by the middle of the next decade.\(^{24}\) Iran may have conducted tests to determine whether its ballistic missiles, notably the Shahab-3 or the Scud, could be detonated by remote control while still in flight. The significance of such a capability lies in its potential to launch an electromagnetic pulse (EMP) attack, discussed later in this section.

This effort is closely linked to Iran's growing interest in space. In October 2005, Iran became the first space nation in the Muslim world when it launched a surveillance satellite on a Russian rocket from Russia's missile base at Plesetsk.\(^{25}\) Since then, Iran has made great strides toward development of an indigenous space launch capability. In February 2007, it successfully carried out an initial test of a “space rocket” built in Iran.\(^{26}\) A year later unveiled its first space center, with Tehran claiming that it had now “joined the world’s top 11 countries possessing space technology to build satellites and launch rockets into space.”\(^{27}\) These advances amplify and expand Iran's ballistic missile program, since a space-launch vehicle (SLV) is similar in technology and function to the booster on an intercontinental ballistic missile.

The threat posed by Iran's ballistic missile program is closely linked to Tehran's nuclear effort. Since it was publicly exposed by an Iranian opposition group in August 2002, Iran's atomic program has been the center of intense international scrutiny and frustration. Yet despite years of pressure by the United Nations and the international community, Iran continues to progress toward a nuclear capability. In October 2007, French authorities – citing estimates by the International Atomic Energy Agency (IAEA) – suggested that Iran was operating 3,000 centrifuges at its uranium enrichment facility at Natanz.\(^{28}\) That claim was later confirmed by Iranian officials.\(^{29}\) According to subsequent projections, that number of centrifuges could yield enough highly enriched uranium for a nuclear weapon in 2009 if operated at full (100 percent) efficiency, and in 2010 if they worked just a quarter of the time.\(^{30}\)

Since December 2007 Iran has built a stockpile of low-enriched uranium hexafluoride. According to the IAEA, Iran's stockpile had reached more than 1,000 pounds by August 31, 2008, with monthly production rates of more than 100 pounds. In 2009 this could give Iran at least 1,500 pounds that could be recirculated through its centrifuges to produce the 35 pounds of weapon-grade uranium sufficient for one bomb.\(^{31}\) In April 2008, Iranian president Mahmoud Ahmadinejad disclosed that his government had begun to install another 6,000 centrifuges at the Natanz facility.\(^{32}\) Iranian leaders have taken this to be a critical milestone. “The nuclear issue (of Iran) is the most important political development in contemporary history,” Ahmadinejad announced to supporters at that time. “Iran's victory in this biggest political battle will lead to new international developments.”\(^{33}\)

Thus all indicators point toward the development of an Iranian nuclear capability with varying estimates not about

whether Iran is doing so, but instead when it will have such weapons.

There have also been reports that Iran as well as North Korea, and even terrorist groups, could have benefited from information from the notorious A.Q. Khan proliferation network. In 2006 drawings were discovered on computers owned by Swiss businessmen that included how to build a warhead that could be fitted on an Iranian ballistic missile. Whether these drawings were earlier passed on to Iran is not certain. The nuclear-related documents allegedly included hundreds of pages of specifications for a compact nuclear device that could have been designed for Iran.34

Other states already possess or are developing weapons of mass destruction and ballistic missiles. They include:

- **Pakistan**, which has had a nuclear capability at least since 1998 and has extensive ballistic and cruise missile programs. Pakistan possessed as many as 100 nuclear warheads and continues to upgrade its missile forces. The country has made major advances in missile technology, especially considering that it presently lacks the domestic science and technology base for developing such weapons, which suggests that it has been very successful in acquiring technologies from abroad. At the moment, Pakistan’s longest-range ballistic missile is the Hatf-6, which has a range of 2,000 kilometers. At that range, the Hatf-6 is nearing the 2,500 kilometer threshold which the Rumsfeld Commission indicated would mark the existence of the technical base necessary for the development of long-range missile systems.

- **While Pakistan’s nuclear arsenal and ballistic missiles are ostensibly intended to deter Indian aggression, Pakistan’s domestic political situation is so turbulent that there is no guarantee that these weapons will be used strictly for that purpose. For example, under a radicalized regime such missiles could be used against U.S. forces and military installations in Afghanistan and Iraq.** Despite Pakistan’s cooperation in the War on Terror, serious questions exist as to whether elements in the Pakistani security services, in particular the Directorate for Inter-Services Intelligence (ISI), are actively working against U.S. interests by supporting Afghan and Pakistani Taliban fighters in the Pakistani tribal areas. The fact that such powerful elements could be operating outside official Pakistani policy channels is frightening, even though ISI does not directly supervise the nuclear arsenal. Pakistan’s nuclear forces are overseen by the National Command Author-

- **Syria**, which maintains biological and chemical weapons capabilities and possesses a large inventory of surface-to-surface ballistic missile systems, could deliver conventional and unconventional warheads to neighboring countries in the Middle East.35 Syria has also shown more than a passing interest in acquiring a nuclear weapons capability, as evidenced by the construction the Al-Kobar reactor site, which was subsequently destroyed by an Israeli Air Force strike in September 2007. The Central Intelligence Agency (CIA) has estimated that Damascus possesses hundreds of free-rocket-over-ground (FROG) missiles, Scud missiles, and SS-21 short-range ballistic missiles (SRBMs).36 Syria also maintains the indigenous capability to manufacture liquid-fuel Scuds.37 In September 2003 testimony before the House of Representatives Subcommittee on the Middle East and South Asia, then-Under Secretary of State John Bolton outlined that Syria “is fully committed to expanding and improving its CW program” and “is continuing to develop an offensive biological weapons capability.”38 Syria’s mobile missile force is capable of targeting much of Israel, as well as parts of Iraq, Jordan, and Turkey, and it has “developed a longer-range missile – the Scud-D – with assistance from North Korea” while simultaneously pursuing “both solid- and liquid-propellant missile programs.”39

- **Egypt**, which is engaged in a clandestine effort to acquire WMD and ballistic missile technologies. Egypt has been a primary destination for North Korea’s ballistic missile exports and has received shipments of Scud B and C mis-

36 Ibid.

37 Ibid.

39 Ibid.
siles, as well as No Dong missiles. Inspections by the IAEA have uncovered plutonium traces at Egyptian nuclear facilities, increasing international concern about clandestine nuclear development efforts on the part of the Mubarak regime. The IAEA has also criticized Cairo for failing to declare certain nuclear materials and sites, one of which was a facility for separating plutonium that could be used in an atomic weapon.

- Saudi Arabia, which will undoubtedly find a nuclear weapons program a more attractive option if Iran achieves nuclear status and may already be pursuing a nuclear hedging strategy. Under an agreement signed during the October 2003 visit to Islamabad by Saudi Crown Prince Abdullah, Riyadh reportedly gained access to Pakistani nuclear technologies in exchange for stepped-up energy cooperation and improved strategic relations with Pakistan. While Saudi Arabia has denied that it is developing a nuclear weapons capability, it has been granted “small quantities protocol” status from the IAEA, which removes strict oversight of its nuclear reactor and could potentially facilitate the clandestine pursuit of nuclear weapons. Riyadh, meanwhile, was reported to be seeking modern replacements from China for its aging arsenal of CSS-2 missiles originally purchased from China more than a generation ago.

Strategic Competitors
People’s Republic of China

According to the Defense Department, “China has the most active ballistic missile program in the world. It is developing and testing offensive missiles, forming additional missile units, qualitatively upgrading certain missile systems, and developing methods to counter ballistic missile defenses.” PRC missile modernization efforts build upon current capabilities that encompass ballistic missiles able to target the United States as well as Japan and other regional U.S. allies. For example, China has over 46 Dong-feng 4, Dong-feng 5, and Dong-feng 31 intercontinental ballistic missiles, approxi-mately 35 intermediate-range (Dong-feng 3, and Dong-feng 21) missiles, and hundreds of short-range rockets currently deployed. Between 990 and 1,070 SRBMs are deployed opposite Taiwan, and the People’s Liberation Army is increasing this force by more than 100 missiles each year. At the same time, China is in the midst of a massive, multi-year strategic-military modernization program, encompassing air power, naval, and land force capabilities, air defense, and electronic-, information- and space-warfare technologies.

As part of this effort, China is upgrading its existing ballistic missile arsenal. This includes the deployment of its Dong-feng 31 and Dong-feng 31A ICBMs with multiple independently targetable re-entry vehicle (MIRV) warhead technology designed to defeat primitive anti-missile systems, priority solid-fuel propellant research intended to provide Beijing with immediate “launch on command” capabilities, and the transformation of its strategic offensive forces from large, stationary missiles to more versatile road- and rail-mobile variants. Notably, a successful flight test of China’s new submarine-launched version of the Dong-feng 31, the Julang 2, was conducted in June 2005. The Julang 2 has a range of up to 5,600 kilometers and, according to the U.S. Air Force’s National Air Intelligence Center, “will, for the first time, allow Chinese [missile submarines] to target portions of the United States from operating areas located near the Chinese coast.” These capabilities are even more troubling in light of remarks made by Chinese Major General Zhu Chenghu, who declared that nuclear weapons would have to be used if the United States intervened militarily in a conflict over Taiwan.

49 Ibid.
51 Ibid.
In addition, China has also begun to undermine American space dominance and is developing asymmetrical options to exploit perceived U.S. vulnerabilities in space. These include a variety of space-denial capabilities, as well as space assets and launch systems that will significantly augment Beijing’s space operations. For example, in the wake of its successful October 2003 launch of the \textit{Shenzhou} V space-craft, China is developing advanced military capabilities as part of an exo-atmospheric “deterrent” force even while Beijing warns against any U.S. weaponization of space. In January 2007, China successfully destroyed a Chinese weather satellite using a direct-ascent, anti-satellite weapon, indicating its ability to attack satellites operating in low-earth orbit. Beyond the hit-to-kill technology demonstrated in this operation, the PRC is also developing technologies to “jam, blind, or otherwise disable satellites.”53 China has also developed a range of “nano-satellite” technologies for space warfare, apparently for the purpose of crippling American space assets.54

Other Chinese advances in space include the \textit{Ziyuan} 1 and \textit{Ziyuan} 2 remote-sensing satellites and the development, through a joint venture between China’s Tsinghua University and the United Kingdom’s University of Surrey, of a constellation of seven mini-satellites (weighing between 101 and 500 kilograms) with 50-meter-resolution remote-sensing payloads.55 Furthermore, there is growing evidence that China is increasingly interested in developing an EMP capability, both as a theater weapon for use in a potential Taiwan conflict and as a strategic asset to counter the United States.56

Beijing’s space achievements also include the \textit{Shenzhou} VII, the third Chinese manned spaceflight, together with ...
China’s first spacewalk in September 2008.57 In addition, China is working on in-orbit rendezvous and docking procedures (which also have direct applications for ASAT and space-denial missions), and exploring the prospects for a manned space station. The Shenzhou VII mission and spacewalk will provide China with docking techniques required for the construction of a space station that will reportedly be accomplished by joining two Shenzhou vehicles together. Moreover, the PRC has an elaborate lunar exploration program that includes an unmanned moon lander, a sample return mission, and an eventual human mission to the moon. For these missions, Beijing is developing a new Long March V booster. The timetables for the Chinese unmanned moon landing, a sample return mission, and a manned lunar mission are believed to be 2012, 2015, and 2017, respectively. China’s manned moon mission is approximately three years ahead of the U.S. target date for returning to the moon.

Another extremely troubling development is the PRC’s increasing efforts in the realm of cyber warfare, particularly as a means to attack U.S. infrastructure, computers, and associated networks. Such asymmetrical efforts underscore Beijing’s understanding of the increasing role played in U.S. military operations by command, control, communication, computers, intelligence, surveillance, and reconnaissance (C4ISR) systems. The objective of the PRC is to establish electronic dominance early in any conflict scenario in order to disrupt and downgrade the utility of such assets, while simultaneously taking steps to ensure that an adversary cannot deny China access to its own information systems.58 The inescapable conclusion is that Chinese strategic force modernization, space denial and anti-access capabilities, and cyber warfare activities provide clear evidence of a strategy aimed at degrading the ability of the United States to project power and support its allies in the region and thus undermining the credibility of the U.S. extended deterrent. To address these challenges, the United States must ensure that it remains the preeminent space power.

\textbf{Russian Federation}

With the collapse of the Union of Soviet Socialist Republics (USSR), the Russian Federation inherited the sprawling Soviet ballistic missile apparatus, which includes medium- and long-range solid- and liquid-fueled missiles. Presently, Moscow retains a formidable offensive strategic arsenal—the cornerstone of which is the SS-18 Satan ICBM, slated to remain in combat service for the next ten or fifteen years.59 However, Russia’s principal ballistic missile of the future is the Topol ICBM, which has recently been deployed.60 The Russian military has created a highly maneuverable variant of this missile, the Topol M, which has MIRV warhead technology. Beyond the Topol M, Russia appears to be continuing with the development of the RS-24, which is capable of being equipped with as many as 10 warheads.61 The RS-24 has been successfully tested on several occasions.62 The Russian navy has also continued flight tests of its Bulava se launched strategic missile system, which has a range of at least 8,000 kilometers and can carry ten or more MIRV warheads, with varying degrees of success.63

Over the past several years, Russia has substantially altered its strategic posture. In late 2003, Russia unveiled a new military doctrine lowering the bar on the use of nuclear force to protect Russian interests in its “near abroad” of Central Asia and the Caucasus.64 Then-President Vladimir Putin announced the end of Russian force reductions and launched massive exercises of the country’s strategic forces.65 Russia has also announced that it will discontinue missile-launch notifications to other signatories of the Hague Code of Conduct on missile proliferation. Moscow and Beijing have held joint military exercises on one another’s territory and continue to strengthen military ties with...

\begin{itemize}
\item 60 Jane’s Sentinel Country Risk Assessments, “Russian Federation: Strategic Rocket Forces,” January 11, 2008.
\item 62 Doug Richardson, “Russia Completes Second RS-24 Flight,” Jane’s Missiles and Rockets, February 1, 2008.
\item 63 David C. Isby, “Russian Media Belatedly Reports Bulova Failure,” Jane’s Missiles and Rockets, February 1, 2008.
\item 64 Sergei Blagov, “Russia’s War Games Demonstrating a ‘Nuclear First?’” Asia Times, February 19, 2004, http://www.atimes.com/atimes/Central_Asia/FB19Aug02.html (as of November 12, 2008).
\item 65 In February 2004, the Russian armed forces carried out the country’s largest military exercises in two decades. As part of these drills, Russia’s Strategic Rocket Forces are reported to have tested a next-generation, maneuverable “hypersonic” rocket specifically designed to penetrate missile defenses. Significantly, however, this does not appear to be an appreciable advance of Russian ballistic missile technologies, but an exploitation of existing MARV (maneuvering atmospheric reentry vehicle) or maneuverability capabilities. Nikolai Sokov, “Military Exercises in Russia: Naval Terrence Failures Compensated by Strategic Rocket Success,” CNS Research Story, Monterey Institute of International Studies, February 24, 2004, http://cns.miis.edu/stories/040224.htm (as of November 12, 2008).
\end{itemize}
other countries in the region, by way of the Shanghai Cooperation Organization. These steps are seen by Moscow as a hedge against Western encroachment into countries on its periphery and a means to blunt the emerging American missile defense system. These trends are likely to continue under the Medvedev administration, as power in Russia appears to have shifted to the prime minister’s office, now occupied by Putin.

The Dangers

This itemized list of advances in ballistic missile capabilities in recent years, if viewed individually, might still understate the dangers to the United States and its allies. The proliferation of ballistic missile capabilities by potential enemies, both states and non-state actors, must be viewed more broadly. It carries with it the implication that America and its allies may face coalitions of missile powers as additional states acquire such capabilities. For example, Russia or China could decide to back North Korea in a confrontation with South Korea, Japan, and the United States. Likewise, U.S. allies may drop out in the face of such a combined threat stemming from enemy coalitions whose members are armed with ballistic missiles, thus possibly confronting the United States with the larger missile threat presented by such a combination of missile possessors. Furthermore, in an emerging multi-polar world where ballistic missile and nuclear proliferation create an increasingly complex coalition dynamic, the unpredictability factor increases dramatically and must be addressed. The analogy of two scorpions in a bottle that characterized the U.S.-Soviet confrontation in the Cold War is giving way to multiple scorpions in a bottle, with all the complexity, unpredictability, and danger that this possibility implies.

Asymmetric Threats

Asymmetric threats by rogue states and strategic competitors pose growing and compounding dangers to the United States and its allies.

WMD Terrorism

ists affiliated with Iran’s Islamic Jihad Organization made a serious bid to buy an atomic bomb or fissile material from one of Russia’s crumbling “nuclear cities.” More recently, the 9/11 Commission explicitly warned that “Al-Qaeda remains extremely interested in conducting chemical, biological, radiological, or nuclear attacks.” After the March 2003 arrest of 9/11 mastermind Khaled Sheikh Mohammed, investigations revealed that terrorists had obtained materials for producing botulinum and salmonella toxins and cyanide.

Lebanon’s Hezbollah has also acquired menacing capabilities that were put on display during the 34-day war between the Shiite militia and the Israeli Defense Forces in 2006. During the course of the conflict, Hezbollah managed to launch over 4,000 of its estimated 13,000 rockets into northern Israel. Particularly troubling is the fact that in the final days of the war, when Hezbollah should have been weakened by Israel’s sustained military operations, militiamen launched more rockets into Israel than at any other time during the conflict, striking as deep into Israeli territory as Hifa.

Since the 2006 war, Hezbollah has rearmed both quantitatively and qualitatively, and Hezbollah Secretary General Hassan Nasrallah has claimed that the group’s arsenal now includes rockets that can target anywhere in Israel. A 2007 United Nations report concludes that Hezbollah may now have as many as 10,000 long-range rockets and 20,000 short-range rockets. United Nations Secretary General Ban Ki-moon has suggested that Hezbollah is now capable of striking Israel’s main metropolis, Tel Aviv, and that the militia has tripled its stockpile of C-802 land-to-sea missiles. The addition of longer-range missiles significantly challenges efforts to counter Hezbollah’s capabilities. As part of the ceasefire agreement that ended the hostilities in 2006, the Lebanese army and the United Nations Interim Force in Lebanon (UNIFIL) have assumed much greater responsibilities in disrupting Hezbollah activities south of the Litani River. In response, Hezbollah has simply moved many of its long-range missile launchers north of the Litani into areas of the Bekaa Valley where neither the Lebanese army nor UNIFIL patrol. Even in southern Lebanon, where the Lebanese Army and UNIFIL are ostensibly providing security, Hezbollah has been successful in rearming with anti-tank missiles and Katyusha rockets hidden in villages and camouflaged bunkers, according to the Israel Defense Force (IDF).

The Ship-borne Scud Threat
Among the threats outlined in the 1998 Rumsfeld Commission Report is the one posed by ballistic missiles launched from vessels such as freighters, tankers, or container ships close to the American coastline. Such a danger has only increased in the past decade. In August 2004, then Secretary of Defense Rumsfeld emphasized that “One of the nations in the Middle East had launched a ballistic missile from a cargo vessel. They had taken a short-range, probably Scud missile, put it on a transporter-erector launcher, lowered it in, taken the vessel out into the water, peeled back the top, erected it, fired it, lowered it, covered it up. And the ship that they used was using a radar and electronic equipment that was no different than 50, 60, 100 other ships operating in the immediate area.” U.S. officials have suggested that Rumsfeld was referring to Iran, which tested a ship-launched missile in the late 1990s. This ship-borne ballistic capability could be used to launch EMP attacks from locations off the U.S. coastline with devastating effects (more below).

Asymmetric Proliferation
In 2002, writing in the Financial Times, Defense Science Board chairman William Schneider described the mechanics by which North Korea has managed to acquire nuclear capabilities as the quintessential “twenty-first century template for proliferation.” The rapid, clandestine acquisition of critical mass in Pyongyang’s nuclear program, according to Schneider, reflects the existence of a vibrant, and self-sustaining, proliferation architecture in today’s international system. Schneider was referring to what has now been designated the North Korean “nuclear corridor.”

North Korea is a prime example of this trend. The development of the Al-Kibar reactor in Syria, destroyed by an Israeli airstrike in September 2007, is believed to have been greatly aided by North Korea. In fact, North Korea went so far as to send personnel to help construct the reactor. Beyond its nuclear proliferation efforts, the Kim Jong-Il regime has become a principal supplier of ballistic missile components and associated technologies to the Middle East. The Nuclear Threat Initiative (NTI) estimates that North Korea has exported more than 1,000 Scud missiles along with missile-related parts to the Middle East region. Missile exports, which net North Korea around $1.5 billion a year, constitute one of its largest sources of revenue. North Korea has since expanded this trade, and is now believed to be offering technologies associated with its advanced Taepo Dong 2 ICBM to a number of regional client states, including Syria and Iran.

Moreover, North Korea has sold missiles to Pakistan in exchange for nuclear technologies, a trade facilitated in large part by A.Q. Khan’s proliferation network (see below for more on A.Q. Khan).

China has also used the transfer of nuclear and ballistic missile technologies as a tool of global influence and a money-making enterprise. Extensive Chinese assistance has been instrumental to North Korea’s development of the Taepo Dong 2, and it has played a central role in Pakistan’s development of nuclear capabilities. This cooperation has led to a trilateral “proliferation axis” that has given Pakistan access to North Korean ballistic missiles and allowed Pakistani nuclear know-how to flow to North Korea. Chinese defense companies have also been complicit in aiding Iran’s progress on ballistic missile technology. The United States responded by imposing penalties on these companies for exporting to Iran high-performance metals and other components that can be used to extend the range of Tehran’s missile arsenal.

Furthermore, such activities are not confined to state actors. In late 2003, the discovery of the clandestine nuclear cartel headed by Pakistani scientist A.Q. Khan exposed an alarming web of WMD and ballistic missile proliferation. Khan confessed that he had provided Libya, Iran, and North Korea with technical assistance and components for manufacturing high-speed centrifuges. The government of Pakistan also revealed that he “gave some centrifuges to Iran,” and U.S. intelligence officials believe that North Korea purchased high-speed centrifuges from the Khan network. Perhaps most troubling was the discovery of a nuclear weapon design in 2008 on the computer hard drives of several members of Khan’s network. The bomb design is a miniaturized implosion device cable of fitting on North Korea’s No Dong missiles, as well as Iran’s Shahab and Pakistan’s Haf-5 (Ghauri) missiles. Depending on how much the design allows for warhead size reduction, these countries may be able to make significant advances in their MIRV warhead programs.

The EMP Threat

According to the 2004 report of the EMP Commission, the United States faces a threat from EMP that could have catastrophic consequences based on even a single nuclear warhead. EMP is generated by any nuclear weapon burst at any altitude above a few dozen kilometers, with the height of

85 “Report of the Commission to Assess the Threat to the United States from Electromagnetic Pulse (EMP) Attack, Critical National Infrastructures,” 2008, http://www.empcommission.org/docs/A2473-EMP_Commission-7MB.pdf, (as of November 12, 2008). According to the report, a single nuclear weapon exploded at high altitude above the United States will interact with the Earth’s atmosphere, ionosphere, and magnetic field to produce an electromagnetic pulse radiating down to earth and additionally create electrical currents in the earth. EMP effects are both direct and indirect. The former are due to electromagnetic “shocking” of electronics and stressing of electrical systems, and the latter arise from the damage that “shocked” – upset, damaged, and destroyed – electronics controls then inflict on the systems in which they are embedded.

burst being significant in determining the area exposed to EMP. The EMP threat arises from the ability, whether by terrorists or states, to launch relatively unsophisticated missiles with nuclear warheads to detonate at altitudes from 40 to 400 kilometers above the earth’s surface. The rationale for such action would be the high political-military payoff in the form of devastating consequences. An EMP attack would constitute a highly successful asymmetric strategy against a society as heavily dependent as the United States is on electronics, energy, telecommunications networks, transportation systems, the movement of inventories in its manufacturing sector, and food processing and distribution capabilities. As noted in the EMP Commission report, EMP was an unintended result of a nuclear detonation at an altitude of about 400 kilometers during the Starfish nuclear weapons tests above Johnston Island in the Central Pacific in 1962. The effects, felt some 1400 kilometers away in Hawaii, included “the failure of street lighting systems, tripping of circuit breakers, triggering of burglar alarms, and damage to a telecommunications relay facility.” Nuclear tests conducted by the Soviet Union, also in 1962, produced damage to overhead and underground buried cables at distances as far away as 600 kilometers, together with surge arrest er burnout, spark-gap breakdown, blown fuses, and power-supply breakdown. The destruction and mayhem caused by an EMP explosion would be far more substantial today given the ubiquity of electronics and society’s increased reliance on them to run critical infrastructures.

Several potential enemies either already have, or could soon acquire, the capability to attack the United States with a high-altitude nuclear explosion EMP that would cover a wide geographic region. Such a weapon need not be detonated directly over the United States itself to produce major damage to America’s critical infrastructures such as telecommunications, banking and finance, fuel/energy, transportation, food and water supply, emergency services, government activities, and space systems. U.S. satellites, both civilian and military, are vulnerable to a range of attacks that include EMP, especially in low-earth orbits. Again, as the EMP Commission concluded, “The national security and homeland security communities use commercial satellites for critical activities, including direct and backup communications, emergency response services, and continuity of operations during emergencies.” Such satellites could be disabled by collateral radiation effects from an EMP attack on ground targets.

Thus it is obvious that an interdependence exists between the objects of a potential EMP attack. Disabling one of the infrastructures, such as telecommunications or electricity, would have severe consequences for others, with cascading effects from which an advanced, technologically dependent society such as the United States might not easily recover. An EMP attack mounted against the United States would have far broader international consequences, given the interdependence of America and other economies in an era of globalization. An EMP attack against other economies, such as Japan or a European nation, would have major effects in the United States, and on other countries if the attack was on the United States. The services that would be essential to cope with the consequences of a terrorist attack, such as hospitals and emergency services, themselves might be disabled and therefore would not be available when and where they were most needed. As Senator John Kyl has pointed out, “A terrorist organization might have trouble putting a nuclear warhead ‘on target’ with a Scud, but it would be much easier to simply launch and detonate in the atmosphere. No need for the risk and difficulty trying to smuggle a nuclear weapon over the border or hit a particular city. Just launch a cheap missile from a freighter in international waters – al-Qaeda is believed to own about eighty such vessels – and make sure to get it a few miles in the air.”

Notably, Russia has considered attack options that include EMP. During the May 1999 NATO air campaign against Serbia, members of the Russian Duma, meeting with U.S. congressional counterparts, reportedly speculated about the paralyzing effects of an EMP attack on the United States. To amplify on the Rumsfeld statement cited under “Ship-borne Scud Threat,” above, Iran is reported to have tested whether its ballistic missiles, such as the Shahab-3 or the Scud, could be detonated by remote control while still in high-altitude flight. The most plausible explanation for such tests is that Iran is developing the capability to explode a high-altitude nuclear weapon that could destroy critical electronic and technological infrastructures. Without an

86 Ibid.
87 Ibid. The pertinent geometric relation says that EMP will be “seen” at a distance from “ground zero” of 110 kilometers times the square-root of the burst-altitude measured in kilometers; thus, a nuclear weapon with a burst height of 100 kilometers (whose square-root is 10) will expose an underlying area with a radius of 1100 kilometers (or about 725 miles in diameter) to the effects of its EMP. A burst-
Missile Defense, the Space Relationship, and the Twenty-First Century

Twenty-First-Century Threats

Missile Defense, the Space Relationship, and the Twenty-First Century

The purpose of this strategy is to protect and defend the people, territory, infrastructure, and institutions of the United States and its allies to the greatest extent possible. This strategy is a marked departure from the retaliation-based deterrence strategy of the Cold War. It is a strategy specifically tailored to meeting the security demands resulting from the emerging multi-polar world, which has been brought about, at least in part, by the proliferation of ballistic missiles and nuclear weapons. A mix of offensive and defensive strategic forces, which are modernized to meet the new and challenging requirements of this strategy, will be necessary. Thus, a global and layered ballistic missile defense system must be intricately linked to other strategic forces, where the broader strategic posture of the U.S. and its allies results in security benefits that are greater than the sum of its parts.

As the United States dissuades future potential possessors, it must recognize that threats are increasing at a pace that no longer allows the luxury of long lead times within which a missile defense could be developed and deployed. Therefore, the United States must develop and rapidly field a missile defense with global reach, capable of coping with threats against the United States and its forces and allies from any direction. At the same time, America must attempt to dissuade hostile actors from acquiring missiles by rendering such investments a poor use of limited resources. Additionally, given the uncertainty in predicting where, when, and by whom missiles might be launched – and what their targets may be – constant defenses are called for that are capable of intercepting missiles irrespective of their geographic origin.

Other things being equal, it is preferable to intercept threatening ballistic missiles as far away from their intended targets and as early in their flight trajectory as possible. Best of all would be to have the capability to destroy an attacking missile shortly after it is launched, while its rockets still burn and any perturbation will lead to its destruction – with, in many cases, the debris falling back onto the area from which the attack was launched in the first place. The capability to interdict a missile and its warheads in any phases of their flight (boost, midcourse, and terminal) requires an ability to detect and intercept the attack within a very few minutes and to track and destroy the attacking missile and its warheads during their longer midcourse traverse through space before they reenter the atmosphere. Finally, the last-ditch defense would be to destroy the attacking missiles as they reenter and pass through the atmosphere – and as accompanying debris and decoys burn up on reentry – in the terminal phase en route to their targets. The best defense ca-
pability would be layered so that it could provide opportunities for destruction in all three phases of flight.

Only space-based defenses inherently have this global capability and permanence. While sea-based defenses can move freely through the two-thirds of the earth’s surface that are oceans, their capability is limited by geography and by the specific operations of the fleet – including where the sea-based missile defense happens to be deployed at any given time, and how quickly it could be redeployed to meet a crisis situation. Air-based and ground-based defenses, meanwhile, can have global capabilities, but frequently take considerable time to deploy when and where needed and are also dependent on the cooperation of U.S. friends and allies in permitting the necessary supporting activities on their territories. Thus, only a space-based missile defense will possess both constancy and global availability, irrespective of allied support and agreement. As such, space-based missile defense constitutes the only truly global system, with all the rest being either regional or local.91

In the case of sea-based systems, namely the Aegis program discussed in section 2, we have a regional system capable of boost-phase, midcourse, and terminal intercept depending on where and how it is positioned, or vectored. It has a near-global application for regional operations, because it is sea-based and theoretically it can be deployed over any portion of the earth’s surface covered by oceans. A land-based system can theoretically be deployed anywhere over about one-third of the world’s surface and, depending on how it is vectored, under some limited conditions would also be capable of boost-phase, midcourse, and terminal interception. Yet space-based missile defense alone is truly global in reach because of the medium in which it operates, unconstrained by overflight or territorial restrictions. It also offers inherent interdiction advantages, described in greater detail below.

Like military transformation itself, considered to be a journey rather than a destination, deployment of a missile defense is not an end state. It is instead part of a process that must both anticipate emerging threats and take the fullest advantage of technologies that are, or could be made, available before such threats materialize. The missile defense that is deployed over time should benefit to the extent possible from the opportunities afforded by kinetic energy (hit-to-kill) technologies. Such a missile defense should anticipate and be capable of rendering obsolete the missile systems of potential enemies, even before such missiles are deployed.

In the mid-1980s the feasibility of kinetic energy intercept technologies was demonstrated, and subsequently became the choice of both the Reagan and the George H. W. Bush (hereafter referred to as Bush-41) administrations for building near-term defense systems of all basing modes, including in space. While it retained the focus on kinetic energy, the Clinton administration abandoned space-based architectures for intercepting and destroying ballistic missiles, concentrating instead almost exclusively on ground-based defense system concepts. As a result of this emphasis, kinetic energy technology provides the most mature basis for present-generation missile defenses. However, directed-energy weapons – particularly lasers that can be precisely aimed and configured to deliver killing energy on targets at the speed of light – offer important potential for missile defense that, along with other technologies, should be exploited in the years ahead. For example, the first shoot-down of a ballistic missile by the U.S. Missile Defense Agency’s airborne laser (ABL), is currently planned for late 2009 (more on the ABL in section 2).

The Dynamics of Comprehensive Defense

As noted earlier, given the nature of the ballistic missile threat now arrayed against America, the missile defense system that the United States deploys in the years ahead must be layered in nature, capable of intercepting and destroying ballistic missiles in each of the three phases of their flight.

Ideally, the United States must have a missile defense that provides for destruction as soon as possible, while offering the opportunity for multiple shots as the missile and its warheads proceed from launch to target. Each of these phases – boost, midcourse, and terminal – offers intercept opportunities. But each also has inherent limitations that must be taken into account in the design and deployment of a missile defense architecture.

Boost Phase/Ascent Phase

Just after launch, the boosting missile is especially vulnerable as it rises from its launcher. The ascent phase begins after the booster burns out and before the separation of the warhead(s) from the missile. The missile is relatively slow moving, not yet having achieved full acceleration, and it emits bright exhaust gases that are relatively easy for sensors to detect and track. Intercepting during the boost phase has the advantage of destroying the missile before it disperses its payload, which may consist of more than one warhead and/or countermeasures in the form of decoys. Intercepting a missile in boost phase has the additional advantage that the debris, including warheads, may, depending on how ear-

91 By “regional” or “local,” we mean systems that can be vectored to cover different regions such as the Mediterranean or the Pacific, or parts of countries – such as Alaska or California in the United States.
Notional Layered Missile Defense System

- Terminal phase:
 - Atmosphere slows decoys
 - Warheads can maneuver
 - Hard to avoid lethal effects

- Mid-course phase:
 - Above atmosphere
 - Must discriminate between weapons and decoys

- Boost phase:
 - Threat most vulnerable
 - Get many RVs with one shot
ly interdiction occurs, fall on the country launching the missile—a reality that could have a substantial deterrent effect, if the launching state is faced with the likelihood of inflicting serious damage on its own territory. Boost phase, however, is relatively short in duration. For medium- and short-range missiles, the boost phase lasts at most only a couple of minutes, while for a missile of intercontinental range it may be as long as three to five minutes. Thus, the time for boost-phase interception is correspondingly limited.

Midcourse Phase
The midcourse phase provides a longer timeframe for interception of the missile or its payload. This phase may account for as much as 80 percent of the rocket’s total flight time—some 20 minutes for the longest-range missiles—therefore offering multiple intercept opportunities.

Midcourse interception, however, may require that the missile defense system distinguish between warheads and decoys, the latter being released in order to confuse sensors and waste interceptors against a false target. As the warheads and decoys reenter the earth’s atmosphere, the decoys slow down considerably because they are likely to be lighter than warheads. Under these conditions, warheads may be more distinguishable, although they may be more difficult to destroy if they have the capability to maneuver like high-speed aircraft.

Terminal Phase
The terminal phase provides missile defense systems with a last-shot opportunity. During this phase, the target array reenters the earth’s atmosphere at an altitude of about 100 kilometers, creating a bright infrared signature. While this segment is again shorter, atmospheric drag shreds away false targets and permits the defense to launch its interceptors against the exposed warheads with greater confidence. Reentry, however, also brings another difficult problem, namely that the warheads may maneuver to become very difficult targets to hit. Whether a missile is solid or liquid fueled also affects the duration of the boost phase: missiles with solid fuel produce greater propulsion (and therefore fly faster) than liquid-fueled missiles and will thus have a shorter boost phase.

It is instructive to recall that Iraq modified and extended the range of its Scud missiles during the 1991 Gulf War by welding sections of three Scuds together. As a result, upon reentry into the earth’s atmosphere, the Scud missiles broke up and the warhead section became aerodynamically unstable, creating a corkscrew effect as it spiraled toward Israel and Saudi Arabia. This unintended countermeasure was quite effective because the Patriot anti-missile systems deployed by the United States did not have sufficient maneuverability to intercept the modified Scuds.

Layered Defense
We clearly see that the most effective way to maximize interception opportunities is through a layered approach, one that affords multiple opportunities to destroy missiles and their warheads from launch through reentry and reduces the burden placed on any one of the layers of the defense.

Layered defenses have the additional inherent advantage of complicating the design of the offensive systems they are deployed to intercept and destroy. For example, a missile is especially vulnerable in boost phase because it carries explosive fuel. Yet if the missile is hardened in order to reduce the possibility of destruction in boost phase, the result is an increase in the missile’s weight, possibly easing the task of later interception. The corresponding reduction of payload also has the added benefit of diminishing the missile’s destructive potential and/or range.

In addition to providing the opportunity for multiple shots against a missile or its warheads, a layered approach also allows for the sharing of technologies between systems. Thus, technologies used in one intercept vehicle can be shared with intercept vehicles on other platforms, resulting in cost-savings as well as other logistical and interoperability benefits. Furthermore, in a multi-tiered system, failures at any given layer can potentially be compensated for in other layers.

By contrast, each element of a single-tier defense must be close to 100 percent effective—a condition unlikely to be achieved, especially as the number of warheads to be intercepted increases. The multiple-shot opportunities afforded by a layered architecture ensure a more robust performance because the various engagement tiers offer mutually reinforcing advantages and synergies. In order to build an effective layered defense, it will be essential to develop and deploy systems that include space-based, as well as sea- and land-based, elements.

First Steps
As a result of the missile defense program of the George W. Bush (Bush-43) administration, the United States has based 20 interceptors capable of intercepting and destroying intercontinental ballistic missiles during midcourse of flight at Fort Greely in Alaska, together with another four at Vandenberg Air Force Base in California. These are ground-based interceptors specifically designed to counter long-range missiles such as the North Korean Taepo Dong 2. The initial U.S. deployment program also provided for land-, sea-, and space-based sensors, including existing Defense Support Program early-warning satellites; an upgraded radar now located at Shemya, Alaska; and new sea-based X-band radar and other sensors now
on Aegis cruisers and destroyers. Finally, the Bush-43 administration initiated the deployment of a sea-based defense capable of intercepting short and medium-range ballistic missiles – and Japan joined with the United States to develop a sea-based capability to intercept long-range missiles. These missile defenses, together with other systems and planned deployments, are discussed in greater detail in section 2.

As part of this system, the United States also upgraded early-warning radars presently stationed at Beale Air Force Base in California, in Greenland, and in the United Kingdom. The land-based U.S. missile defense architecture includes the deployment of Patriot Advanced Capability-3 (PAC-3) systems to intercept short- and medium-range ballistic missiles, together with the Terminal High Altitude Area Defense system (THAAD) to intercept short- and medium-range missiles at high altitudes.

The initial deployment was intended to provide only a limited defense against a threat of likely no more than five warheads – a very small, single rogue-state threat. In addition to the initial deployment in Alaska and California, a third interceptor site in Poland and an early warning radar installation in the Czech Republic are designed to detect and defeat possible missile launches from the Middle East. Despite these welcome initiatives, the United States will find it necessary to include additional sea-based together with space-based missile defense in light of the existing and emerging threat from larger numbers of reentry vehicles, together with possible attacks from shorter-range missiles.

In order to be effective, these follow-on capabilities must have the ability to defend against more than merely small rogue-state threats. An effective missile defense should be designed to make it virtually impossible for any adversary to influence U.S. decisions or the course of a regional conflict by threatening to launch small numbers of nuclear weapons against the United States, its deployed forces, or its allies. It should also be sufficiently robust so as to create a significant degree of doubt regarding the effectiveness of a larger counterforce attack on U.S. deterrent forces.

We turn now to the basic question of what steps are necessary for the United States to acquire an increasingly effective missile defense capability in the years ahead.
Panel 1 Report

Members of panel 1 addressed a series of questions that focused on section 1, “Twenty-First-Century Threats and the Role of Missile Defense.” The summary of those discussions follows.

Panel Members
Chair: Dr. Robert L. Pfaltzgraff, Jr.
Mr. Ilan Berman
Ambassador Henry F. Cooper
Mr. Brian Kennedy
Mr. Jeff Kueter
Mr. Baker Spring

I. What are the implications of the key issues raised in section 1 for missile defense, and specifically for space-based missile defense, as we look beyond 2008?
Given the missile threats facing the United States, the Ground-based Missile Defense (GMD) system being deployed represents only part of what is required for a robust, global layered defense, capable of intercepting ballistic missiles in each phase of their trajectory. By itself, however, GMD is a limited midcourse defense that will be effective against only a few missiles with simple decoys. Fortunately, we are also deploying the Aegis ship-based missile defense that can contribute to a layered defense against missiles of all ranges.

Because GMD cannot adequately discriminate among midcourse threats, it may be prone to failure unless it is part of a layered missile defense. The United States must be prepared to deploy a missile defense sufficiently advanced that rogue states will be dissuaded from making the necessary investment in missiles. At the same time, the United States should also deploy a missile defense capable of deterring strategic competitors such as China or Russia.

More than a decade ago, the United States had vigorous space-based sensor and interceptor development programs underway, such as Brilliant Pebbles, which were terminated because they did not conform with the restrictions of the ABM Treaty. These technologies should be revived and incorporated, along with advances made since then, into a high-priority development program that not only draws on the lessons learned from the Brilliant Pebbles program but also from other successful weapon development efforts such as those that produced intercontinental ballistic missiles, the Polaris nuclear submarine and missile, and stealth technologies.

The threat environment for missile defense includes the possibility that missiles could be launched against the United States from anywhere on the globe. We are increasingly vulnerable to both short- and long-range missiles from rogue states and non-state actors, as well as from strategic competitors such as Russia and China. Because we cannot know with certainty where or when a missile will be launched against the United States, our missile defense must be capable of handling a broad spectrum of threats. In short, the United States needs to deploy a global, multi-tiered missile defense system against an increasingly worldwide missile threat. A missile defense that includes cruisers and destroyers is vital to global layered missile defense.

Such a force can be deployed in close proximity to a crisis and therefore has the potential to strike a missile in its boost phase as it protects U.S. and coalition forces, as well as the civilian populations of allies. Such a naval missile defense avoids sovereignty and targeting issues that may confront land-based missile defense. However, space provides the arena for a truly global missile defense.

II. What are the implications of the key issues raised in section 1 for overall U.S. national security?
The United States faces a global security setting characterized by accelerating proliferation of weapons of mass destruction and the means to deliver them. New actors are acquiring technologies ranging from individual components to complete systems resulting in such capabilities. Although Russia does not today pose a missile threat to the United States, despite its continuing possession of large numbers of delivery systems with sufficient range to reach American targets, it possesses technologies, including ballistic missile components and expertise, that are being actively proliferated. Furthermore, we have no assurance that a future Russian leadership will not threaten the United States with its extensive nuclear-armed missile inventory. Indeed, Russia appears increasingly committed to the reestablishment of a neo-imperialist sphere of influence in the new states to its south and west. Putin has spoken of rebuilding a “Great Russia” and has decried the dissolution of the Soviet Union as one of the greatest calamities of the twentieth century. Russia has also demonstrated a sustained and alarming drift toward authoritarianism and toward the reassertion of power on its periphery, as in the conflict with neighboring Georgia in 2008. A U.S. missile defense must therefore be sufficient to counter a future threat from Russia.

China, meanwhile, is expanding both its ballistic missile capabilities and its space presence. China has benefited considerably from U.S. technology, including missiles, and now has
an inventory of ICBMs capable of striking the United States. China is improving this capability by replacing its existing arsenal of CSS-4 “Mod 1” ICBMs with the longer-range CSS-4 “Mod 2,” together with the development of mobile and submarine-launched variants of the Dong-feng (DF)-31 ICBM. Estimates suggest that China’s arsenal could grow to as many as 60 ICBMs by the end of the decade. China seems determined to build a nuclear force designed to inhibit U.S. action in the event of a renewed crisis such as in the Taiwan Strait. At the same time, China has deployed several hundred short-range ballistic missiles opposite Taiwan, with roughly 100 such missiles expected to be added each year. These missiles could also be used to conduct strikes against Okinawa and Japan, including U.S. forces stationed there.

China also possesses an active space program designed to make it a military space power. With the launch in October 2003 of its first manned spacecraft, China became the third nation, after the United States and Russia, to send a manned vehicle into space. A second successful manned mission was completed in October 2005. China’s space program is designed to demonstrate Beijing’s achievements and potential in such areas as computers, space materials, manufacturing technology, and electronics – technologies with dual-use military and civilian space applications – as well as to challenge U.S. dominance in space. On January 11, 2007, as noted elsewhere in this report, China launched a missile that destroyed an aging Chinese satellite, thus demonstrating an ASAT capability.

At the same time, the United States faces threats from other states that are either the exporters of WMD technologies or the breeding grounds and training sites for terrorists. One such nation is North Korea, which launched a ballistic missile over Japan in 1998. In addition to missiles, North Korea now is able to export fissile material or even assembled nuclear devices, posing an additional and unacceptable threat to the United States. A nuclear-armed North Korea would also weaken deterrence in and around the Korean peninsula.

Moreover, many states, as well as terrorist groups, could launch short-range missiles from ships off American coasts. We currently have no missile defense capable of destroying such missiles. The devastation caused by short-range missiles such as Scuds armed with a nuclear warhead would be far greater than the 9/11 attacks. A comprehensive approach to homeland security, in which missile defense and efforts to identify, destroy, or change such regimes are priorities, is therefore needed.

III. What steps need to be taken in light of these issues to achieve space-based missile defense, both immediate and longer-term?

During the Cold War, it was clearly possible to identify the Soviet Union as the source of a potential nuclear attack against the United States and the object of retaliation on which mutual assured destruction was based. The twenty-first century strategic environment differs fundamentally: missile threats to the United States can now be mounted from almost any point on the globe.

Given the nature of this missile threat, only a global missile defense is adequate. Moreover, such a defense cannot be achieved without a space-based interception component. In the near term, kinetic energy space-based intercept technologies developed more than a decade ago in the Brilliant Pebbles program could be revived at minimal cost (approximately $10 billion over a twenty-year life cycle). A research program in directed-energy weapons based on technologies already developed for applications in space and on aircraft should also be pursued.

While less flexible than space-based defenses, sea-based anti-missile options should be vigorously developed and deployed. This includes upgrades to the U.S. Navy’s Aegis system and Standard Missile to provide increasingly effective intercept capabilities. Both space-based and sea-based missile defenses are essential to a global layered missile defense.

IV. What are the key obstacles to space-based missile defense and how can they best be addressed and overcome?

While in effect, the ABM Treaty served as a critical impediment to U.S. deployment of space-based missile defense. With the treaty’s termination in 2002, new opportunities for space-based missile defense have emerged. However, the key obstacles to space defenses remain more political than technological in nature. For example, certain constituencies continue to voice vehement opposition to space-based missile defenses in the mistaken belief that they could result in the weaponization of space. This assumption is the result of the dubious logic that if the United States refrains from the deployment of space-based missile defense, other nations will behave in similar fashion. There is no empirical basis for expecting such international reciprocation, however. Whatever the United States chooses to do (or not to do), China, among other nations, seems determined to pursue space programs and, at least in the case of Beijing, to establish itself as a space superpower. The Chinese direct-ascent launch against its own weather satellite in January 2007 illustrates the difficulty inherent in restricting the weaponization of space by international treaty. We could have great difficulty even agreeing on what constitutes a space weapon. Is it
a missile launched from earth against an object in space? If so, how would it be possible to differentiate between a missile for this purpose and a missile for other purposes?

Another issue is the failure to connect the emerging global missile threat to an adequate understanding of the requirements for an effective defense against such threats. This means that confining a U.S. missile defense to a few fixed land-based interceptors, together with a limited sea-based capability, provides only limited coverage. Whatever global coverage is furnished by ground- and sea-based systems could be vastly augmented by space-based missile defenses.

Other political obstacles exist. For example, there are institutional barriers in which departments and agencies responsible for missile defense are understandably reluctant to see their efforts questioned or their roles changed. Furthermore, defense contractors often have strong financial interests in maintaining existing programs. Last but not least, China and Russia have adopted strategies to prevent or discourage the United States from pursuing space-based missile defense options. Both nations seek to undermine the position of the United States as the dominant space power and to keep it from developing space-based missile defense and other space capabilities. In particular, China engages in various forms of psychological warfare intended to shape U.S. policies and attitudes. This includes the dissemination of information meant to gain support for China’s position as well as the use of international law, or what is called “legal warfare,” to shape opinion and otherwise forward China’s goals.98

V. Are there opportunities that can be seized to press forward with space-based missile defense?

Despite the political obstacles, there is a desire within the general American public to maintain space superiority, including the deployment of space-based missile defense. If the United States is perceived as no longer dominant in space, many people will want to know how and why such dominance was lost and what needs to be done to restore it.

By the same token, there is a broad, but mistaken, belief that the United States is already defended by missile defense (which underscores the public’s support for missile defenses). Moreover, as noted above, China’s increasingly prolific space program could offer another catalyst to building an American consensus on missile defense. The fact that several other nations are manifestly interested in space and pursuing their own programs provides yet another important consideration for pressing forward with a robust U.S. missile defense program that prominently includes space.

VI. What are the implications of key issues raised in section 1 for other panels?

Section 1 raises a number of important issues including the global nature of the missile threat, the need for a correspondingly global defense and the role of space in that architecture, and existing obstacles and opportunities to the development and deployment of a layered global missile defense. Creating a robust, flexible, and expandable missile defense will have important implications for the U.S. scientific-technological base, including required investments and lead times, and ensuring that a cadre of trained personnel remain available. Such issues will need to be addressed as the United States moves forward with missile defense. They are discussed in greater detail in later sections of this report.

Beyond the “Initial Deployment”

If the United States is to acquire a missile defense capable of intercepting missiles and warheads from wherever they are launched, we must jettison mindsets that persist even though several years have passed since the United States officially withdrew from the Anti-ballistic Missile (ABM) Treaty. Specifically, America must build upon technical achievements that were set aside during the 1990s because they were at odds with the ABM Treaty. We should revisit programs developed during the Reagan and Bush-41 administrations in order to build a truly global layered missile defense for the twenty-first century. Those programs that produced technologies for boost-phase defense, together with today’s even more advanced technologies developed in both the military and commercial sectors, should now be reviewed as a matter of highest priority by an independent outside group. Such an examination, conducted free of prevailing bureaucratic and industrial interests, would provide the analysis needed to give new momentum and direction to the missile defense program.

A robust missile defense necessarily includes each of the intercept phases of a layered defense. Terminal defenses provide localized coverage designed to protect specific, high-value targets, but because they cannot be deployed everywhere, they must be part of a broader layered missile defense architecture. Midcourse defenses are important because this portion of a missile’s trajectory provides the longest time for intercept, although it may also be necessary, depending on the type of payload, to differentiate decoys from reentry vehicles – a significant discrimination challenge. Boost-phase/ascent-phase defenses afford unique advantages. Specifically, the missile can be destroyed as it ascends from its launcher before it dispenses its warheads and decoys. A boost-phase missile defense can be highly effective in severely blunting, or even possibly eliminating, an enemy missile attack. It is in the boost phase that missiles are most vulnerable to interception as they rise against the Earth’s gravitational field. At this point the missile is relatively slow moving, has a large infrared signature and cross-section, and still-attached fuel tanks. Moreover, it is possible, depending on how early in the boost phase it is intercepted, that the debris, including possibly WMD warheads, would fall on the territory of the country launching the attack. In addition, a boost-phase defense that is space-based could always be on station on a worldwide basis, unfettered by sovereignty issues of overflight and operations on another nation’s territory.

Summary of Existing Programs

Together, defenses that encompass each of the phases of a missile’s trajectory afford the opportunity for multiple intercepts. Nevertheless, the United States initially deployed a system capable of destroying not more than a few enemy warheads and that does not provide for multiple hits. It is widely recognized that this initial capability, consisting of 24 ground-based interceptors and 38 Standard Missile (SM)-3 sea-based interceptors, may not be adequate to meet the growing challenges of ballistic missile proliferation, much less the more numerous and sophisticated threats of Russia and the People’s Republic of China. (There is no current U.S. missile defense program to defend against the missile forces of Russia or the PRC, which are growing in numbers and sophistication.)

On the positive side, the test record for missile defense radars and interceptors has improved significantly (32 of 42 hit-to-kill intercepts since 2001, and 26 or 27 since September 2005), and the initial missile defense capability called for in 2002 is now operational. At present, in addition to the 24 long-range ground-based interceptors deployed in Alaska and California, (only) six more are scheduled to become operational by the end of 2009. Ten Aegis ships are now capable of missile intercepts with eight to be added in 2009. As noted in table 2-1, the interceptors are mostly SM-2s. There are 38 SM-3s with 32 to be added by the end of 2009, and

the SM-3 Block IIA is under development in a cooperative program with Japan. Although we have not yet done so, the SM-2 or -3 could be upgraded with boost-phase capability. However, existing missile defense radars have been upgraded and new ones, including the transportable X-band, one sea-based, have been added. The limited goals of the U.S. program are illustrated by its stated objectives for the end of 2013, defined in terms of five blocks of capabilities:

1. Defend the United States from the North Korean long-range missile threat
2. Defend allies and U.S. overseas forces from short- to medium-range threats in one theater
3. Expand the defense of the United States to include a limited long-range threat from Iran
4. Defend allies and U.S. overseas forces from limited long-range Iranian missile threats and expand protection of the homeland against such threats
5. Expand defense of allies and overseas forces from short- to intermediate-range threats in two theaters

With these limited goals, the United States plans to develop and field by the end of 2013: 44 long-range GBI in Alaska and California, plus 10 in Poland (agreement reached in August 2008); four THAAD fire units with up to 96 interceptors; fixed-site radars in Alaska, California, the United Kingdom, Greenland, and the Czech Republic, and up to five transportable X-band radars; 18 Aegis missile defense ships with about 133 interceptors; a small airborne laser capability. The current and projected missile defense deployments are presented in table 2-1. Multiple kill vehicles for single interceptors are under development, and may be available by 2013. These will be significant capabilities, to be sure, assuming that the Obama administration and Congress accept them.

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Interceptors Deployed</th>
<th>Location(s)</th>
<th>Interceptors Projected†</th>
<th>Intercept</th>
<th>Missiles Engaged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground-based Midcourse Defense (GMD)</td>
<td>Ground-based Interceptors (GBI) 24</td>
<td>Ft. Greely, Alaska and Vandenberg AFB, California</td>
<td>By 2010, 44 in Alaska and 6 in California</td>
<td>Midcourse, exo-atmospheric</td>
<td>ICBMs</td>
</tr>
<tr>
<td>Sea-based Missile Defense (Aegis-BMD)</td>
<td>SM-3 Block IV</td>
<td>Aegis-equipped ships</td>
<td>Redzikowo, Poland 10 projected in 2013</td>
<td>Currently used primarily for defense of carrier battle groups; also provide Near-term Sea-based Terminal (NTS-BT) capability against SRBMs. Could be modified to intercept Scud in ascent phase, launched off the U.S. coast.</td>
<td>ICBMs, IRBMs</td>
</tr>
<tr>
<td></td>
<td>SM-3 Block IA</td>
<td>Aegis-equipped ships</td>
<td>15 to be added in 2009</td>
<td>Ascent (geography and timing permitting); midcourse, exo-atmospheric</td>
<td>SRBMs, MRBMs, IRBMs; under some conditions, ICBMs</td>
</tr>
<tr>
<td></td>
<td>SM-3 Block IB</td>
<td>Aegis-equipped ships</td>
<td>Projected testing in 2001, Deployment in 2011</td>
<td>Ascent (geography and timing permitting); midcourse, exo-atmospheric</td>
<td>SRBMs, MRBMs, IRBMs; under some conditions, ICBMs</td>
</tr>
<tr>
<td></td>
<td>SM-3 Block IIA</td>
<td>Aegis-equipped ships</td>
<td>Development, projected deployment 2015</td>
<td>Ascent (geography and timing permitting); midcourse, exo-atmospheric</td>
<td>SRBMs, MRBMs, IRBMs, ICBMs</td>
</tr>
<tr>
<td>Terminal High Altitude Area Defense (THAAD)</td>
<td>Mobile fire units</td>
<td>8 interceptors for 2 fire units in 2009, 2 more for 2013</td>
<td>1 aircraft available for testing by 2013, testing through 2015</td>
<td>Boost-phase intercept</td>
<td>SRBMs, MRBMs, IRBMs</td>
</tr>
<tr>
<td>Airborne Laser</td>
<td>Modified 747 aircraft equipped with lasers</td>
<td>1 aircraft available for testing by 2013, testing through 2015</td>
<td>If deployed, could intercept in boost, midcourse, and terminal phases</td>
<td>If deployed, could engage ICBMs, IRBMs, SRBMs</td>
<td></td>
</tr>
<tr>
<td>Space-based Interceptors including Brilliant Pebbles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 Blocks 1, 2, and 3 do not include defending the United States from ship-based short- to medium-range missiles off the coasts – despite the repeated emphasis placed on such threats by Secretary Rumsfeld.
But they are very modest capabilities relative to what the United States could do and relative to the possible threat, even excluding Russia and China. While a single sea-based U.S. interceptor destroyed a satellite in February 2008, these defenses may face defense penetration aids and/or several warheads, and two to four interceptors may be required for confidence in the destruction of a single warhead.

In light of this emerging threat environment, greater attention must be given to boost-phase intercept capabilities, and sea-based and space-based systems must be given greater funding and priority in light of their inherent capability and potential to provide boost-phase defenses. As table 2.1 illustrates, the contrast between the lack of any space-based interceptors and the focus on other types of missile defense is stark.

Ground-based Missile Defense

Although ground-based missile defense (GMD) is presumed to be the most feasible because it has been under continuous development for over half a century and receives far more money and attention than other options, it is also the most limited, especially when compared to the space-based systems discussed in this report. We are concerned that the growing costs of the GMD system will preclude sufficient funding and effort to develop, in a timely way, the more effective sea- and space-based boost-phase intercept systems. While the ground-based system receives almost an order of magnitude more funding, the sea-based system, which has an inherent global capability with ships currently deployed throughout the world, is proceeding at a funding-limited
pace. This suggests the Missile Defense Agency has made a less than optimum assignment of priority, especially in light of the superior performance and potential capability of sea-based compared with ground-based missile defense. Although greater funding has gone into the ground-based than the sea-based systems, space-based missile defense has seen very little investment in recent years. Especially as we face greater cost constraints in the years ahead, it will be essential to gain maximum value from our missile defense investment. This argues for greater focus on space-based missile defenses because they have the greatest potential to meet emerging threats.

Instead, we find ourselves today in a situation of having deployed first the least capable and cost-effective systems and only later developing systems that are potentially more capable and cost effective but which were “dumbed down” or even abandoned because they were prohibited by the ABM Treaty. As a result, the 1991 Global Protection against Limited Strikes (GPALs) architecture and programs, especially Brilliant Pebbles, were diluted by the 1991 and 1992 Missile Defense Acts and then set aside, postponed, and/or technically reduced in effectiveness by the Clinton administration. This led to a situation in which, in some aspects of missile defense, we are behind where we were as long ago as 1992. The current system remains highly vulnerable to criticism from both opponents and proponents of missile defense. At this time, beyond improving its associated radars and their interning, the major system improvement plan is to add interceptors. The missile and interceptor may be improved, but only marginally.

The best alternative for ground-based missile defense system improvement would be the revival of the Advanced Technology Kill Vehicle (ATKV) developed in the Strategic Defense Initiative (SDI) program. As discussed in the sea-based missile defense subsection below, the ATKV would significantly improve the missile’s acceleration and final velocity and provide a better suite of sensors than the current kill vehicle (KV). Additionally, the ATKV would enable a successful Multiple Kill Vehicle (MKV) program – placing a number of KVs on a single interceptor – essentially creating a missile with multiple independently targetable reentry vehicle capability to allow engagement of several targets. This would permit a more efficient and effective use of the limited ground-based interceptor inventory and, since a greater number of objects could be targeted, might lessen the mid-course discrimination problem.

This analysis does not address in greater detail short- and medium-range missile defenses because those currently under development or being deployed are largely inapplicable to homeland defense under most scenarios (more below). The Patriot Advanced Capability–3 (PAC-3) has a good test record and is attractive to many of our allies as well as U.S. forces in the field, but it is a point, not an area, defense against short-range missiles. To handle the threat of Scud-type missiles launched off the coastlines of the United States (the GMD system does not address this threat), many Patriot batteries would have to be deployed on the coasts. The THAAD system, designed to be both a high endo- and exo-atmospheric system against medium-range missiles, has, after a lengthy and discouraging development and testing start, finally conducted five successful intercept tests and the first fire unit is ready for deployment.

Sea-based Missile Defense

Sea-based defenses can potentially intercept a missile in its boost or ascent phase after the booster burns out and before the warhead(s) separates from the missile. In the boost or ascent phase, warheads and decoys are deployed, provided the sea-based platforms are located in the necessary proximity to the launch point. Ships stationed farther away can intercept attacking warheads during their ascent and throughout the midcourse phase (provided the warheads can be distinguished from decoys) and into the terminal phase. This contrasts with the current GMD system, which will be limited to intercepts late in the midcourse phase. Ground-based interceptors deployed on the territory of allies could also provide a degree of boost-phase intercept capability against ICBMs launched at the United States from some locations, but gaining such access and deployment rights would be more difficult than stationing ships in international waters, which comprise over two-thirds of the Earth’s surface.

A sea-based defense is advantageous because it can be fielded rapidly – within one or two years – largely because the United States has already invested over $80 billion in the Aegis system. At any time, several American Aegis ships are deployed around the globe, which can be readily moved to

The current Standard Missile-3 (SM-3) Block I program has achieved an impressive 13 of 15 successful testing record. If it continues according to its current schedule, the SM-3 Block I will achieve a limited defense capability against medium-range ballistic missiles, and could be given a 9 late midcourse capability against ICBMs (see table 2-1).

Such a capability could dovetail nicely with the joint U.S.-Japanese program to develop a larger-diameter version of the SM-3 second and third stages, referred to as the SM-3 Block IIA. Like previous versions, this missile will fit in the MK-41 Vertical Launch System (VLS) deployed on the U.S. Navy Aegis-Ticonderoga-class cruisers, Spruance- and Arleigh Burke-class destroyers, as well as on the ships of several U.S. allies. This jointly funded program could be accelerated with additional U.S. investments. For example, an added $300 million over the next three years could accelerate the schedule for an initial operating capability by more than a year, from 2015 to 2014.

The operating area within which a sea-based system can intercept a hostile missile increases significantly as the intercept velocity increases. As noted above, a limited intercept capability against ICBMs is possible with the existing SM-3 interceptor, which has a velocity slightly over 3 kilometers per second (km/sec). The SM-3 Block IIA U.S.-Japanese joint program will lead to a capability of about 5 km/sec. However, a velocity of 6 to 7.5 km/sec is needed to give a significantly larger global defense capability, especially in boost phase. This global defense objective can be accomplished for the lowest cost if 7.5 km/sec interceptors were made compatible with the existing U.S. VLS infrastructure and that of allies willing to participate in building a global defense capability (see section 6).

The 21-inch-diameter SM-3 Block IIA will be the largest interceptor that can fit into the VLS. Fortunately, miniaturized lightweight SDI technology developed a decade ago and used to achieve 6-7.5 km/sec with this VLS-compatible interceptor. (The lighter the kill vehicle on a given missile, the faster the missile will accelerate – and the higher its final velocity.) Several years ago, the Lawrence Livermore National Laboratory proposed the use of SDI technology to demonstrate an ATKV. Because of its light weight, an ATKV outfitted on the SM-3 Block IIA could achieve the desired 6-7.5 km/sec velocity. Unfortunately, this ATKV has not been funded, and the laboratory and industrial teams with the experience for development and production have largely been disbanded. It is necessary to revive the entire program.

It appears that MDA has abandoned plans to build a larger-diameter interceptor for use on sea-based ballistic missile defense assets. This is a positive step because it would avoid the expensive retrofitting that would be required if these interceptors were used. However, ignoring the potential of the ATKV and opting instead for a heavier kill vehicle on the SM-3 Block IIA is the wrong architectural choice. Because the VLS is used by the Aegis system, the SM-3 Block IIA is the largest missile that can be deployed on Aegis ships. As a result, it is necessary to fit these missiles with the lightest kill vehicle possible in order to obtain a boost-phase intercept capability. The proposed Advanced Kinetic Warhead for the SM-3 Block IIA is too heavy for boost-phase intercept and is being considered primarily for exo-atmospheric intercepts in the ascent and descent phases.

The size limitations of the VLS have also led to a reduced interest in the Kinetic Energy Interceptor (KEI) program, now centering on boost-phase intercept. As a result, Congress has raised questions about the wisdom of maintaining both the KEI and the Airborne Laser (ABL) program, which also seeks to achieve a dedicated boost-phase capability. In fact, KEI funding was cut significantly in the MDA’s 2008 budget submission and by Congress, plummeting to $326 million (from the $1 billion forecast in 2005 MDA budget documents), and delaying deployment from 2012 to 2013. Missile defense officials said the cuts reflected a decision to focus on programs closer to fielding.

As of the end of the 2008, the United States has fielded 18 Aegis BMD-capable ships, two of which are in service in the Atlantic. These numbers will increase by mid-2010 to a total of 21 ships, five of which will operate in the Atlantic. Currently, the Navy is able to outfit ships with Aegis BMD capability for about $10 million in as little as six to eight weeks. The faster these ships are fielded the better in order to provide a defensive capability against Scuds launched from ships off America’s coasts. For an investment of prob-

5 His includes the first-ever test conducted by a Japanese ship; O’Rourke, “Sea-based Ballistic Missile Defense.”

6 Ibid.

ably below $100 million, the Navy could rapidly test its existing system with modified software and begin initial operations in conjunction with the various sensors of the East and West Coast test ranges.

The inherent flexibility of the Aegis sea-based system was clearly demonstrated in the February 2008 intercept of the failed U.S. satellite. This intercept was not a test but rather an effort to eliminate a toxic hazard – hydrazine – that was descending toward Earth. Unlike the secrecy surrounding the Chinese launch a year earlier, the United States announced what it planned to do well in advance of the actual event itself. To do so, we reprogrammed the guidance system of the SM-3 interceptor that was designed to target slower and lower missiles. This provides additional evidence that the SM-3 can not only do what it did to the satellite, but that it can certainly perform the missile-intercept missions for which it was designed. The impact of the intercept destroyed the target at an altitude of about 130 miles above the Pacific. The intercept vaporized the half ton of toxic rocket fuel and incinerated vaporized debris as it fell harmlessly to Earth.

Space-based Missile Defense
For the United States, space is an indispensable first line of defense. Almost since the beginning of the space age over 50 years ago, the United States has used this arena for intelligence and defense support, including deploying sensors in space to provide early warning of a missile launch. Without space control, the United States cannot maintain dominance on the battlefield.

Of all basing modes, space-based defenses would provide the widest area of coverage and the greatest number of shots against enemy warheads, and it would have the very desirable feature of always being present to destroy ballistic missiles launched from anywhere in the world.

Unfortunately, for most of the 30 years of the ABM Treaty, there was little or no experimental verification of the feasibility of space-based defense concepts that had been identified in the early 1960s, as the underlying empowering technology advanced. Then, President Reagan, who was interested in truly effective global defenses, included space-based defenses as a vital part of his missile defense vision. He thus challenged the American scientific community to determine whether the technology for such defenses had advanced to the point that effective defenses, including in space, could be built. By the end of the Reagan administration, creative experiments that avoided the specific constraints of the ABM Treaty had demonstrated that the answer was clearly in the affirmative.10

The Reagan–Bush-41 administrations developed a concept that, but for the political issues discussed elsewhere in the report and especially in section 4, could have begun operating as early as the mid 1990s as part of a global missile defense, employing all basing modes against attacking missiles of every range. This missile defense architecture not only included Brilliant Pebbles as the space-based interceptor (SBI) component of GPALS, but also a layered defense consisting of ground- and sea-based national and theater defenses designed to intercept missiles launched from any point against the United States itself or its interests overseas. GPALS would have defended against ballistic missile launches and limited ballistic missile strikes launched from any part of the globe.11

In marked contrast to the more limited missile defense architecture that evolved subsequently, GPALS was a global defense. This architecture provided for a multi-tiered defense beginning in boost phase against missiles just after launch and extending through midcourse and into the terminal phase. By 1990, as a result of the technology investments of the preceding decade, the space-based elements were more technically mature and capable of rapid development than the ground-based components of GPALS.12 Nevertheless, the promising space-based defense technologies developed more than a decade ago, whose maturity was demonstrated by the 1994 prize-winning Clementine mission to the moon, have remained ignored if not a priori rejected (see section 4).13 Indeed, President Clinton vetoed the

10 Key among these were the three Delta experiments conducted from 1986 through 1989, which demonstrated that largely off-the-shelf missile defense technologies should be able to track and intercept boosting, or accelerating, targets in space, including the capability to distinguish the target from the plume of its rockets. The first Delta experiment (Delta 180) was successfully carried out only 13 months following funding.

11 In the January 29, 1991, State of the Union Address, President Bush announced the GPALS program that would afford protection against as many as 200 long-range missiles.

12 See appendix C for the July 31, 2000, letter from former SDI Director Henry F. Cooper to Senator John Warner and other congressional leaders disputing the commonly held perception that the most mature technology of the Reagan-Bush-41 era was for ground-based defenses. He makes clear that the Brilliant Pebbles space-based interceptor system was considerably more mature, given that it became the first SDI program to achieve an approved Major Defense Acquisition Program status – well over a year ahead of the potential for a ground-based system.

13 Originally sponsored by the Strategic Defense Initiative Organization, the Clementine mission was designed to test new technology that would track and intercept hostile missiles, using celestial bodies such as the moon. The Clementine spacecraft was integrat-
Clementine follow-on mission in 1997 precisely because it involved the next generation of advanced technology beyond Clementine. President Clinton’s principal National Security Council advisor on missile defense told the media that the president exercised his line item veto authority to kill this follow-on mission, which was supported by the scientific community, to send a probe to a deep space asteroid precisely because it involved SDI technology that would violate the ABM Treaty. Since the treaty is now defunct, this criticism clearly does not apply today. Still, we have not even conducted such a demonstration or revived the Brilliant Pebbles program, which would indeed move SBI technology ahead (more below).

There are essentially two basic approaches to space-based missile defense. The first is kinetic energy systems, including Brilliant Pebbles; the second is directed-energy weapons.

Space-based Kinetic Energy Missile Defense

A space-based KEI is designed to hit a ballistic missile in its boost or ascent phase, when the warhead(s) has not yet separated from the missile and is most vulnerable. It is also capable of midcourse and high-terminal phase intercepts. Kinetic kill vehicles would be placed in low-earth orbit, where they would remain until a hostile missile launch was detected. For intercepts in the boost or terminal phases, a kinetic kill vehicle would accelerate out of orbit toward the missile which would be destroyed by direct impact. Midcourse intercepts would occur in space.

By the early 1990s, the United States had developed technology for lightweight propulsion units, sensors, computers, and other components of an advanced kill vehicle. This concept, Brilliant Pebbles, consisted of a constellation of about 1,000 interceptors that combined their own early-warning and tracking capability with high maneuverability to engage attacking ballistic missiles in all phases of their flight trajectory. Each interceptor, or “pebble,” was designed to identify the nature of the attack, which might include up to 200 ballistic warheads, based on a defense that included 1,000 “brilliant pebbles,” and since it knew its own location and that of all other pebbles, each could calculate an optimum attack strategy from its own perspective and execute an intercept maneuver, while simultaneously informing the other pebbles of its action. This operational concept enabled a robustly viable, testable, operational capability that survived numerous scientific and engineering peer reviews in the 1989-90 time period, including by some groups that were hostile to the idea of missile defense in general, and space-based defenses in particular. Still, because of persistent policy preferences, the opposition eventually gained the upper hand politically, and the program, which had been formally approved by the Pentagon’s acquisition authorities, was curtailed by Congress in 1991 and 1992 and then cancelled by the Clinton administration.14

But the technology was clearly established, supporting the Pentagon’s approved acquisition plan that each of the pebbles would operate autonomously because each carried the equivalent of a Cray-1 computer and could perform its own calculations for trajectory and targeting analysis. Each also had its own navigation sensors, allowing it to determine its location and the location of its neighbors – as well as to detect and track the target ballistic missiles and calculate a good approximation of what its neighbors saw.15 These pebbles would act as sensor platforms until all or part of the constellation was authorized to intercept hostile missiles. In fact, their infrared sensors provided the warning and tracking capability needed to alert the Brilliant Pebbles constellation, enabling it to intercept ballistic missiles in the boost and subsequent phases of flight. The constellation would provide a redundant and, for some applications, superior capability to the geosynchronous Defense Support Program satellites used since the early 1970s as a key element of the U.S. Early Warning and Tactical Assessment system. Their small size, meanwhile, made them difficult to target, while their relatively low cost made them easy to replace.

14 See the record of this important program as recorded by the Missile Defense Agency’s historian, Donald R. Baucom, “The Rise and Fall of Brilliant Pebbles,” International Flight Symposium, October 23, 2001. This piece was subsequently published in the Journal of Social, Political and Economic Studies 29, no. 2, (September 2004): 145-90, http://www.highfrontier.org/Archive/hf/D_Baucom_Rise%20and%20Fall%20of%20BP.pdf, (as of November 12, 2008). It is provided as appendix D [make sure this matches up with actual appendices].

15 The term “Brilliant” refers to the use of powerful miniaturized computers and sensors allowing each independent interceptor to employ technology possessed previously only by large, expensive satellites.
The autonomy of Brilliant Pebbles intercepters in detecting launch and undertaking interception complicated the use of countermeasures against their command and control. And because of the number of intercepters deployed in space, these defenses would have multiple opportunities for interception, thus increasing their chances of a successful intercept in either the boost or midcourse phase, or even high in the Earth’s atmosphere during reentry in the terminal phase. These characteristics stand in contrast to the current GMD intercepters, which may not provide more than one independent intercept opportunity.

Although the Brilliant Pebbles program was terminated in the early 1990s, advances in the commercial, civil, and other defense sectors since that time would now permit even lighter mass, lower cost, and higher performance than would have been achieved by the 1990-era technology base. Thus, lighter weight and smarter components could now empower a Brilliant Pebbles interceptor with greater acceleration/velocity, making possible boost-phase intercept of even short- and medium-range ballistic missiles as well as high-acceleration ICBMs, thus surpassing the capabilities of the 1990 Brilliant Pebbles.

As noted above, the same sensor and kill-vehicle technology can be used for ground- and sea-based intercepters – notably on the VLS-compatible, high-velocity Navy SM-3 intercepter. Reviving and building on the Brilliant Pebbles concept and related technologies is essential for the deployment of effective SBIs, as well as improved intercepters for use in other basing modes, especially at sea.

One feasible option for testing and initial deployment of a revived space-based intercepter system based on Brilliant Pebbles would be to deploy approximately 40 to 120 intercepters for a space-system test bed analogous to the ground- and sea-based test beds. After demonstrating feasibility by testing against missiles of all ranges in all possible phases of their flight, this test bed would have a limited capability and could be expanded to become part of a fully capable defensive constellation.

In 1991 initial operations were expected to be feasible in approximately five years; however at that time there was an in-place acquisition program with two competing contractor teams. An appropriate Brilliant Pebbles team could be reconstituted and meet an approximate five-year target date for initial operations. Motorola used commercially available technology to build and begin operating its 66-satellite constellation Iridium communications system in roughly five years for approximately $5 billion. Iridium, now used by the Pentagon for communications to remote locations, exploited many of the technologies, operational concepts, and acquisition management approaches that had been planned for Brilliant Pebbles before it was cancelled in 1993. Consequently, the operational issues demonstrated by the Iridium experience would be valuable in reconstituting a viable Brilliant Pebbles acquisition program, provided personnel with that experience were included on the team.

Brilliant Pebbles Technical Feasibility

Brilliant Pebbles Technical Feasibility

<table>
<thead>
<tr>
<th>1989</th>
<th>1990</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td>Jan</td>
</tr>
<tr>
<td>Jun</td>
<td>BP architecture</td>
</tr>
<tr>
<td>Jul</td>
<td>space-based architecture study</td>
</tr>
<tr>
<td>Aug</td>
<td>decision to proceed with BP</td>
</tr>
<tr>
<td>Sep</td>
<td>no show stoppers</td>
</tr>
<tr>
<td>Oct</td>
<td>BP cost [AF/SDIO/CAIG]</td>
</tr>
<tr>
<td>Nov</td>
<td>countermeasures</td>
</tr>
<tr>
<td>Dec</td>
<td>BP operational issues</td>
</tr>
<tr>
<td></td>
<td>DSB</td>
</tr>
<tr>
<td></td>
<td>Brilliant Pebbles technical trades</td>
</tr>
<tr>
<td></td>
<td>JASON</td>
</tr>
</tbody>
</table>

Brilliant Pebbles Cost Estimates Then and Now

Prior to a 1990 milestone assessment by the Defense Acquisition Board (DAB), the Strategic Defense Initiative Organization (SDIO), the U.S. Air Force, other Defense Department organizations such as the Defense Science Board, and the JASON, conducted rigorous technical, operational, and cost studies in the 1989 “season of reviews” for the Brilliant Pebbles program. In addition, the Cost Analysis Improvement Group (CAIG) in the Office of the Secretary of Defense carried out a detailed, in-depth Brilliant Pebbles cost assessment. The CAIG prepares independent lifecycle cost estimates for major defense acquisition programs prior to major milestone reviews such as the A

17 SDIO was a predecessor organization to the Missile Defense Agency
18 JASON is an independent scientific advisory group that provides consulting services to the U.S. government on matters of defense, science, and technology. It met for the first time in 1958 and was formally established in a DoD advisory capacity in 1960.

DAB, while concurrently reviewing cost estimates prepared by a system program office such as the MDA (or the SDIO, as it was then called). These analyses are the foundation of the IWG report’s cost estimates for the original and a revised BP program as set forth below.

Brilliant Pebbles Costs as a Part of Phase I and GPALS
As illustrated in the following schedule of events from an August 1990 briefing to the DAB by SDIO’s Brilliant Pebbles task force, the thorough in-and-out-of-government 1989 reviews, involving tens of man-years of senior technical and programmatic review and analysis, found no “show stoppers” and led to a January 1990 decision to proceed with the Brilliant Pebbles program as the basic SBI component of the Phase I architecture. The “no show-stoppers” conclusion was significant—especially from the JASON, an elite advisory group not noted for its advocacy of missile defense programs—because of the intensive “red team” analyses to which the Brilliant Pebbles system was subjected, including the most advanced offensive countermeasures that could have been developed against Brilliant Pebbles.

Based on the various CAIG-approved cost assessments in 1989 and the technical viability of the proposed architecture, the DAB fully approved the Brilliant Pebbles SBI system in 1990. The CAIG-approved estimate was that 1,000 Brilliant Pebbles interceptors (or BPs) could be developed, tested, deployed, and operated for twenty years (replacing each pebble once during that 20-year period) with a low to moderate risk, event-driven acquisition program for $11 billion in 1989 dollars, or about $19 billion when inflated to 2008 dollars. Both contractor teams, Martin Marietta and TRW-Hughes, indicated their willingness to accept a firm-fixed-price contract to deliver at these CAIG-estimated costs, contingent on continued streamlined management by the Brilliant Pebbles task force.

Table 2-2 breaks down these 1989 cost estimates and adjusts them to account for inflation. Research, development, testing, and evaluation (RDT&E) and other government-added costs in 1989 dollars were estimated at $7.35 billion—$12.78 billion in 2008 dollars. The 20-year life-cycle operating cost estimate was $2 billion in 1989 dollars—$3.48 billion for 2008 dollars. Estimated 1989 production costs were $425 million for 1,000 pebbles, or $425,000 for each pebble. We assume that it would be necessary to replace each pebble once over a 20-year operations period. This would double these estimates to $850 million for 2,000 pebbles in 1989 dollars, resulting in a 2008 figure of $1.47 billion.

Finally, each individual pebble weighed between 1.4 and 2.3 kilograms, exclusive of fuel, and was to be housed in a protective cylinder, or “life jacket,” in all about 102 centimeters long. A fully fueled pebble would weigh approximately 45 kilograms, including its life jacket. Because of the relatively small size and mass of each pebble package, the launch cost for the 1,000-BP architecture was far less than cost estimates for other types of heavier space-based interceptors previously considered—and apparently considered more recently to present (incorrectly) the current state-of-the-art possibilities (more below). Based on the intensive 1989 season of reviews and the planned use of highly reliable Delta or Atlas launch systems20, the estimated launch cost per BP was $400,000 and $660,000 in 1989 and 2008 dollars, respectively; for a constellation of 1,000 BPs, and to replace each once, was $800 million in 1989 dollars—$1.32 billion in 2008 dollars21.

Other Cost Estimates
No other estimates of the cost of generic SBI systems have involved anything like the intensity or critical review of those developed and undertaken during the season of reviews and the DAB-approved concept definition program discussed above—before or since. Nor were the SBI concepts analyzed and costed in more recent alleged comprehensive analyses constrained by the strict discipline imposed on the development of the Brilliant Pebbles interceptor design. Nor did these more recent analyses include principals from the Brilliant Pebbles program, who necessarily understood the discipline and criteria that drove the design of those cost-effective lightweight components, primarily from commercial

![Table 2-2](https://example.com/table2-2)

<table>
<thead>
<tr>
<th>Projected Twenty-Year Life-Cycle Brilliant Pebbles Costs†</th>
<th>1989</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDT&E</td>
<td>$7.35 billion</td>
<td>$12.78 billion</td>
</tr>
<tr>
<td>Production costs for 2,000 BPs (based on replacing each of the 1,000 BPs once during the 20-year life cycle)</td>
<td>$850 million ($425 thousand cost per BP)</td>
<td>$1.47 billion ($739 thousand cost per BP)</td>
</tr>
<tr>
<td>Launch costs (2,000 BPs)</td>
<td>$800 million</td>
<td>$1.32 billion</td>
</tr>
<tr>
<td>Operating costs (20 years)</td>
<td>$2 billion</td>
<td>$3.48 billion</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$11 billion</td>
<td>$19.05 billion</td>
</tr>
</tbody>
</table>

19 Appendix I discusses Brilliant Pebbles technology and explains why, given the experience of 1994 Clementine space mission and the commercial Iridium program over the past 15 years, there is confidence in both the Brilliant Pebbles technology and the 1989–90 cost estimates of rapidly deploying a Brilliant Pebbles system.

20 The baseline expendable launch vehicle (ELV) for Brilliant Pebbles was to be the then top-of-the-line Delta system with the Atlas ELV as the backup.

21 Private communication from Colonel Rowland Worrell, USAF (Ret.), then-director and program manager of the Brilliant Pebbles task force.

Missile Defense, the Space Relationship, and the Twenty-First Century

Requirements, Feasibility, and Timelines for Missile Defense R&D and Deployment 29
cial off-the-shelf (COTS) technology22. Nor were the results subjected to anything like the critical review of the Brilliant Pebbles concept.

While their application of the well-known “rocket equation” and attributes of orbital mechanics is no doubt correct, these more recent analyses assumed heavier (and less capable) components than those of the Brilliant Pebbles design. Thus, they were led inevitably to much higher cost estimates of far less effective SBI system concepts – just as had been the case for the SBI concepts that the Brilliant Pebbles replaced in the 1990 SDIO reviews. In short, these more recent studies were far less comprehensive than the 1989 season of reviews of the Brilliant Pebbles design, the ensuing 1990 concept definition program, and the subsequent demonstration-validation program – until it was cancelled by an act of Congress, notably not because of any technical or management criticism.23

For example, two seemingly comprehensive reports have been given undue weight by many critics of space-based defenses: the first in 2003 by the American Physical Society (APS)24 and the second in 2004 by the Congressional Budget Office (CBO).25 In fact, the APS and CBO reports both considered far less capable SBI system concepts and focused on a more limited mission – defeating a few Iranian or North Korean ballistic missiles – rather than the much more demanding GPALS mission of providing high confidence in destroying up to 200 Soviet/Russian-quality warheads launched from anywhere on Earth toward the United States or its overseas troops, friends, or allies. Furthermore, these studies were focused only on boost-phase intercept, whereas Brilliant Pebbles was designed to intercept ballistic missiles in all their phases of flight. In a report for the Marshall Institute, Dr. Gregory Canavan noted the relevance of the Iridium26 experience with mass production and other attributes of the Brilliant Pebbles approach.27 He also pointed out that the CAIG-approved $1 billion (1989 dollars) cost estimate for the RDT&E and 20-year operations cost for a constellation of 1,000 Brilliant Pebbles interceptors was the only existing relevant set of government-developed cost estimates.

The value of the Brilliant Pebbles bottom-up design discipline was demonstrated by Canavan’s pertinent observations regarding real world data from the development, deployment, and operation of the Iridium communications system. He observed that the launch costs for the entire Iridium system corresponded to approximately $14 million per ton – slightly less than that projected in 1989–90 for launching and replacing the 1,000-BP constellation (in 2008 dollars) and substantially less than the CBO- and ASP-estimated launch costs. He also lauded Iridium’s demonstrated reduced manufacturing/production costs achieved by employing mass production methods for tens of satellites – also as was project ed for original Brilliant Pebbles design and validated in the 1989 season of reviews and the 1990 concept development studies for inclusion in the DAB-approved Brilliant Pebbles RDT&E effort. (Notably, to reinforce that the Brilliant Pebbles cost estimates discussed above are not exaggerated, the Iridium constellation was developed and deployed for approximately $2 billion with the first satellite launched in May 1997 and a 66-satellite constellation deployed less than one year later. The current 66-satellite network is expected to remain operational until at least 2014, with many satellites predicted to continue in service until the 2020s).

Finally, Dr. Canavan observed that the efficient Iridium operations crew was a “hundredfold” smaller than

22 These design procedures and use of COTS technology were examined and applauded by the National Academy of Sciences. See Committee on Planetary and Lunar Exploration et al., Lessons Learned from the Clementine Mission (Washington, D.C.: National Academy Press, 1997). Clementine was a highly acclaimed demonstration of the first-generation Brilliant Pebbles sensor suite in mapping the entire surface of the moon in 13 spectral bands.

23 The 1992 Defense Authorization Act directed that the DAB-approved Brilliant Pebbles demonstration-validation program be scaled back to a technology demonstration program, presumably because of concerns about the ABM Treaty, which blocked deployment of space-based ABM systems. Subsequently, the Clinton administration canceled the program entirely in early 1993. Notably, Defense Secretary Aspin claimed he was “taking the stars out of Star Wars.” In April 2004, after reviewing the Brilliant Pebbles program and this decision, the Pentagon’s inspector general noted that this fully approved demonstration-validation program had been managed “efficiently and cost effectively within funding constraints imposed by Congress” and observed that termination of key contracts “was not a reflection of program management.”

26 The Iridium satellite constellation is a system of 66 active communication satellites with spares in orbit and on the ground. It allows worldwide voice and data communications using handheld satellite phones. The Iridium network is unique in that it covers the whole earth, including the poles, oceans, and airways. The system was originally to have 77 active satellites – hence the name Iridium, for the element that has the atomic number 77.

that involved in managing the GPS system – also as foreseen for the Brilliant Pebbles operations concept during the season of reviews. Once these factors are taken into account, the remainder of Canavan’s analysis is of considerably less interest, since the costs become relatively insensitive to the numbers of SBLs or other factors that drove his – and the APS/CBO – analyses.

In short, with the exception of Canavan’s discussion of the pertinence of the Iridium experience, these studies did not draw on the actual technology and system concepts that were the essence of the 1987-93 Brilliant Pebbles era discussed by MDA historian Donald Baucom. Application of the right physics equations with the wrong inputs inevitably will produce wrong answers – no great surprise.

Space-based Directed-energy (Laser) Missile Defense

Directed-energy defenses hold the potential in the longer term to provide a boost-phase defense capability. The 1991-92 GPALS system included a follow-on space-based laser (SBL) layer after the Brilliant Pebbles deployment with capabilities that would complement it in two ways: (1) lasers operating at the speed of light assure the earliest possible boost-phase intercept capability, maximizing the likelihood that debris from the intercept would fall back on the launcher’s territory; and (2) while lasers would not be effective in destroying nuclear warheads in space, they would be capable of the active discrimination of warheads from decoys, thus enabling intercept by Brilliant Pebbles or other midcourse defense systems.

The SBL platform would intercept ballistic missiles by focusing and maintaining a high-powered laser on the missile while its rockets are burning and it is very vulnerable to even a small perturbation that could ignite the rocket fuel and destroy the missile. A missile that is struck early in its boost phase could dispense its deadly payload over the country of launch, thus creating in itself a possible deterrent to launching missiles against the United States and its forward-deployed forces. (Countries contemplating the use of missile-delivered weapons of mass destruction would have to consider the possibility that the payload would fall within their own borders). If the missile were engaged near the end of its boost phase, it still might fly a ballistic trajectory, but one that would fall short of its intended target. And as noted above, SBLs could perform an active discrimination mission, aiding SBIs and other midcourse-capable defenses in intercepting the attacking missile before it reenters the Earth’s atmosphere.

Because any one space-based directed-energy platform may not be in sight of the area from which its target missiles are launched at a particular time, a constellation of such platforms would be required to ensure that one or more of them would be in sight of potential launch areas in time to engage the targets while they are vulnerable. A constellation of about 12 SBLs could provide global coverage against up to five ballistic missiles simultaneously launched from anywhere to anywhere else more than about 120 kilometers away. Against theater-class medium-range ballistic missiles, this constellation could destroy up to 10 simultaneously launched ballistic missiles while in boost phase. Against ICBMs, whose boost phase lasts for three to five minutes, a minimum of 15 to 25 simultaneous missile launches could be intercepted.

An R&D program should be pursued to prove the requisite SBL technologies. When developed and fully tested, SBLs would significantly augment the capabilities provided by the Brilliant Pebbles architecture. However, as noted above, there is no current program to provide an SBL capability, and the SBL Integrated Flight Experiment that was scheduled for 2012 has been cancelled.

Air-based Directed-energy Defenses

Another approach to directed-energy defense against ballistic missiles is the Airborne Laser, a Boeing 747 outfitted with a million-watt laser in its nose under development by the U.S. Air Force. If held on the target for a few seconds, the laser can melt a hole in the skin of a missile at distances of hundreds of kilometers. Circling overhead at an altitude of about 12,000 meters, a small number of 747s equipped with these megawatt lasers could destroy missiles launched from anywhere within a large target area. The ABL can detect, track, and intercept an attacking missile within its range while still in boost phase, making it a particularly desirable missile defense, since it essentially eliminates the problem of decoys.

In an attack on the United States by North Korean missiles, for example, the attacking missiles would fly roughly parallel to the Chinese and Russian coastlines and a few

28 Based on the 1995-99 estimates provided by the Heritage Foundation’s Team B, a fully funded acquisition program could lead to an initially operating SBL capability within a decade for $30 billion to $35 billion, which includes 10 years of operating costs. See Missile Defense Study Team, “Defending America: A Near- and Long-Term Plan to Deploy Missile Defenses,” a Heritage Foundation report, 1995; Missile Defense Study Team, “Defending America: Ending America’s Vulnerability to Ballistic Missiles,” 1996; and Commission on Missile Defense, “Defending America: A Plan to Meet the Urgent Missile Threat,” a Heritage Foundation report, 1999.

29 See appendix D for the reprint of Donald R. Baucom, “The Rise and Fall of Brilliant Pebbles.”
hundred kilometers inland – well within boost-phase intercept range for ABL (as well as the upgraded Aegis with a bigger booster and/or smaller kill vehicle). This capability makes both ABL and Aegis attractive possibilities for the next level of ballistic missile defense.

In November 2004, the ABL successfully produced a laser light on the ground for a fraction of a second for the first time, using all six of its power sources. The integration of the ABL high-power laser component into the ABL weapon system test bed and ground testing will be followed by integration of the high-power laser into the aircraft and a series of flight tests. Flight tests against targets are now scheduled for 2009. MDA earmarked $475 million for ABL in FY 2008, with a total of $3.6 billion planned from 2008 to 2013."30

Summary information about the Airborne Laser is presented in table 2-1.

Long-range plans, to be implemented when testing is complete and the system is ready for deployment, call for seven laser-equipped 747s available on a continuous basis, circling over regions from which an attack on the United States and its allies is considered a serious possibility. The aim is to create a fleet of ABLs and the accompanying equipment and support team that could be at a crisis area within a few hours. Two or three planes would probably suffice to monitor the environs of one launching country, while an inventory of seven may be adequate to monitor more than one launching country.

Nevertheless, notable logistical and operational problems and enemy countermeasures could diminish the impact of airborne lasers. For example, ABL operations during a crisis or war will depend on the ability to provide relative safety to the aircraft via protective escort (similar to that given the Airborne Warning and Control System (AWACS) and the Joint Surveillance Target Attack Radar System (JSTARS) aircraft) and air superiority. Whether an enemy would allow this to happen, making his ballistic missiles more vulnerable, or have the incentive to launch the missiles before ABLs were deployed, is not clear. An adversary could also elect to wait out a crisis, believing that the ABL fleet could not sustain 24-hour patrols for a protracted period. Apart from the extensive assets and support team needed for protective escort and air superiority, in order to remain on station for extended intervals the ABL would also require nearby facilities for the storage and production of chemical laser fuel, unique maintenance capabilities (such as for laser and beam control and fire control components), and specialized ground support personnel. Such a support/logistics tail

could well result in overflight, basing concerns, and sovereignty issues.

Another problem confronting the ABL is atmospheric turbulence, which produces small, irregular, constantly moving pockets of air, or “cells.” Each cell has a density and temperature slightly different from the average in the beam. Since air has a refractive index that depends on density, and it bends a beam of laser light by differing amounts depending on the density, the passage through the turbulent atmosphere tends to send parts of the laser beam in different directions. This spreads the laser beam and reduces its intensity, weakening its ability to penetrate the skin of the missile.

However, a relatively new technology called adaptive optics – increasingly used in astronomy to produce sharper and more detailed images of astronomical objects – is included in the ABL to prevent such atmospheric blurring.31 The key element in adaptive optics is a mirror (sometimes called a rubber mirror) that can change its shape about 1,000 times per second, redirecting the various parts of the laser beam to keep it tightly focused on the oncoming missile. The rubber mirror corrects much of the effect of atmospheric turbulence, although it does not remove it entirely. Because of this circumstance, the Airborne Laser can be more effective against ICBMs than it is against shorter-range theater-type missiles, including Scuds: long-range missiles rise to a greater altitude than medium-range missiles, and at higher altitudes the air is thinner and the effect of atmospheric turbulence is not as troublesome. Because the ABL constitutes a potentially important contribution to boost-phase defense, it should be the object of continued investment.

Addressing the Ship-borne Scud Threat

The United States is also faced with the problem of defending against short- or medium-range missiles launched from ships off our coasts. In fact, it is imperative that we view the WMD threat as encompassing ships with WMD that might be brought into our ports, as well as the possibility of the launch of short-range missiles armed with nuclear or even conventional warheads from ships off our shores. The ship-based threat includes both ships that enter our ports and vessels near our shores but outside our territorial waters, from where Scud-type missiles with 200-600 kilometer rang-

31 This adaptive optics technology was pioneered in the SDI program during the late 1980s and transferred to the private sector in 1992 to enable ground-based telescopes to obtain Hubble-quality space imagery.
es could be launched with devastating effects against our coastal cities.

One response to such a threat is to deploy Patriot systems along U.S. coasts. However, achieving significant effectiveness would require fielding a large number of systems, which could create a public relations/interface problem. A more politically viable, less intrusive approach would be sea-based interceptors (based on modified U.S. Navy SM-2 Block IV missiles described above) on ships that operate in waters near our coasts. This capability could easily be adapted from the Pacific Test Range, where all Navy missile defense tests are currently conducted, providing protection for the population living on the West Coast. In addition, the existing sensor and communications capability along the East Coast could be incorporated into an East Coast test range to demonstrate and aid in the creation of a sea-based defense of the eastern seaboard.

The SM-2 Block IV missiles could be used to quickly achieve a limited boost-phase defense against a Scud-type missile launched from a surface ship off the U.S. coast. Radar software modifications would allow the SM-2 Block IV to intercept missiles in boost phase within approximately 20 kilometers from where they were launched. Still needed, however, would be an operational concept involving the Navy and Coast Guard, ship identification and tracking procedures, and sensor netting. Nevertheless, with the requisite radar software modifications (estimated to cost under $100 million) the SM-2 Block IV could have an operational capability within a few months of a decision to move forward. While this would not provide the optimum defense, it would be superior to relying solely on the Patriot.

The United States should also develop other missile defense capabilities against the threat posed by a missile launched from a surface ship. For example, this threat could be countered in the near term with technology enabling boost-phase interception of short- to medium-range missiles by an unmanned aerial vehicle (UAV). The SDI version of this technology was called Raptor-Talon (Raptor was the UAV and Talon was the airborne interceptor based on lightweight Brilliant Pebbles technology). The Raptor-Tal-on should be revived and developed for the coastal defense mission.32

Bottom Line

As detailed in this section, the key to a missile defense that meets twenty-first century challenges lies first in reviving and building on technologies, especially Brilliant Pebbles, that were initially developed in the Reagan and Bush-41 SDI program, but later halted because they were not ABM Treaty compliant. At the same time we must rid ourselves of a mindset that continues to shape even the post-ABM Treaty strategic culture if we are to build the global missile defense capable of multiple intercepts described here. Having outlined technologies and concepts that provide for an increasingly robust missile defense with far greater priority assigned to space-based and sea-based systems, we turn next to a discussion of space as an essential geopolitical setting for twenty-first century missile defense.

32 During the George H. W. Bush administration, SDI pressed for a nearer-term UAV capable of boost-phase intercept. The Raptor-Talon program was an inexpensive UAV (developed by Lawrence Livermore National Laboratory (LLNL) with two built by Bert Rutan’s Scaled Composites Company), that was approaching the testing stage in 1993. The idea was that UAVs would orbit on the edges of a battle area to detect launches of short-range tactical ballistic missiles and perform boost-phase intercept using extremely fast hypervelocity interceptor missiles. The Clinton administration aborted the program, transferring it to NASA. There have been no signs of reviving the Raptor-Talon effort during the George W. Bush administration. A solar-powered version (which charged the batteries during the day and flew on battery power at night), also developed under LLNL management, was transferred to NASA and has set high-altitude records.
Panel 2 Report

A meeting of panel 2 to discuss section 2, “Requirements, Feasibility, and Timelines for Missile Defense R&D and Deployment,” produced a series of conclusions based on an elaboration and refinement of issues raised in section 2.

Panel Members
- Chair: Dr. William R. Van Cleave
- Ambassador Henry F. Cooper
- Dr. William R. Graham
- Mr. Jeff Kueter
- Dr. Charles M. Kupperman
- Vice Admiral J.D. Williams, USN (Ret.)
- Dr. Lowell Wood

I. What are the implications of the key issues raised in section 2 for missile defense, and specifically for space-based missile defense, as we look beyond 2008?

Several missile defense implications and recommendations were discussed by the members of panel 2. They include the testing and deployment of sea-based, space-based, and air-based defenses in a missile defense architecture that includes, but moves beyond, the initial deployment of the ground-based missile defense (GMD) and theater systems presently underway. Based upon IWG studies and work, the panel recommends the updating of Brilliant Pebbles technology that was successfully demonstrated in the early 1990s to create a space-based kinetic energy missile defense test bed that could be deployed in the next three to five years. The panel also supports continued research of directed-energy weapons technologies for applications in space and on aircraft. A robust missile defense based on the requirements set forth in section 2 would place increased emphasis on the deployment of sea-based defenses using current technology as quickly as possible, together with ongoing improvements in revived Brilliant Pebbles technology.

The panel members also proposed adding $50 million for modifications to the Navy’s Standard Missile (SM)-2, Block IV to enable interception of ship-borne Scuds that might be launched off our coasts. Moreover, the panel concluded that we should rapidly upgrade the current SM-3 Block II to give it the capability over the next two to three years to intercept ICBMs in late-midcourse and perhaps boost phase. Panel 2 also strongly recommends accelerating the joint U.S.-Japanese SM-3 Block IIA program and further modifying it with advanced lightweight kill vehicles (more below) to allow expanded boost-phase intercept capabilities. The United States, it was suggested, should also revive the Raptor-Tal-on unmanned aerial vehicle (UAV) program for coastal defense applications in the next three to five years.

II. What are the implications of the key issues raised in section 2 for overall U.S. national security?

Without a serious effort to develop and deploy effective boost-phase defenses, it is only a matter of time before the very limited defense developed by the Bush administration will face countermeasures by adversaries less advanced than Russia and China. We may already see the signs of such developments in China’s transfer of technology to rogue states. The Pentagon’s known programs are not sufficiently responsive to the likelihood of such technology transfers intended to defeat the limited GMD system now being deployed. When and if that fact becomes apparent, the political fallout will strengthen the hand of missile defense opponents.

It was noted that the current U.S. missile defense program leaves American cities vulnerable to Scuds launched from ships a few hundred miles off our coasts. This possibility could become attractive to terrorists, especially for launching short- or medium-range ballistic missiles armed with weapons of mass destruction that could kill millions of Americans in our urban areas. This vulnerability, which has been pointed out by Defense Secretary Rumsfeld and others and emphasized by the EMP Commission, should not be allowed to continue. Yet the current architecture for missile defense fails to address this growing threat even though the Missile Defense Agency contended in 2005 that it would consider this threat.

III. What steps need to be taken in light of these issues to achieve space-based missile defense, both immediate and longer-term?

Technologies developed in the 1990s as part of the Brilliant Pebbles program (such as lightweight kill vehicles) would prove extremely useful to the eventual deployment of space-based missile defense and to the planned or potential modifications of current sea-based missile defenses to augment intercept capabilities. Moreover, such modifications could also serve as a test bed for technologies for a future space-based missile defense. However, the MDA has continued to establish requirements for sea-based missile defenses that will not produce such benefits.

The only major counter-pressure to this undesirable course comes from Japan, which has been a consistent advocate for an improved SM-3 Block 2 interceptor that fits in the existing VLS on Japanese Aegis cruisers. Because of Japan’s persistence, the United States has agreed to provide
such an option, thereby creating the possibility of redirecting the U.S. program. But MDA’s reluctance to initiate efforts to provide the enabling lightweight kill vehicle technology is undermining progress toward that objective. Our goal should be to have a missile defense interceptor deployable on any ship (possibly all) outfitted with the Aegis VLS system, thereby making these platforms missile-defense capable. Such an operational concept would provide major global defense capability without interfering with the Navy’s normal operations.

Furthermore, the timeline for the deployment of advanced sea-based systems is promising if the current programs were redirected. Between $2 billion and $3 billion would be needed for SM-3 upgrades. SM-2 Block IV improvements to provide an anti-Scud coastal defense are estimated to cost between $50 million and $100 million.

The panel also made specific recommendations regarding a space-based missile defense architecture including most importantly the establishment of a streamlined development initiative based on the late-1980s/early-1990s Brilliant Pebbles program and advanced technologies produced since then to demonstrate the feasibility of a constellation of space-based interceptors capable of interdiction in the boost, midcourse, and terminal phases. Such a capability would provide the most effective missile defense and the foundation for a global layered defense network.

IV. What are the key obstacles to space-based missile defense and how can they best be addressed and overcome?

The principal obstacles confronting space-based defense are political rather than technological. Further, the questions facing space-based defense do not relate primarily to cost or schedule. Instead, the problem lies principally with the politics of missile defense. Polls suggest that there is broad public support for deployment of such systems. Many apparently believe that the United States has long had a deployed missile defense. Nevertheless, a small but vocal minority has consistently believe that the United States has long had a deployed missile defense research and development would help dis-

fend the nation and our overseas military forces as well as friends and allies.

A closely associated political problem is the administration’s focus on the Clinton legacy ground-based defense that was designed more to be consistent with ABM Treaty constraints than as an effective defense. When it is learned how limited this defense is – and that there is no alternative being pursued – Congress could likely cut missile defense funding significantly. The fact that we could have produced a viable layered system incorporating proven space-based Brilliant Pebbles technologies will be lost, known only by a shrinking number of technologists purged from the missile defense program since 1993.

V. Are there opportunities that can be seized to press forward with space-based missile defense?

As noted earlier, modifications to the sea-based system could provide an incubator of sorts for space-based missile defense technologies. To exploit this opportunity the joint U.S.-Japanese 53-centimeter-diameter SM-3 Block 2 system should be upgraded with the lightweight Advanced Technology Kill Vehicle developed for space-based applications over a decade ago as part of the Brilliant Pebbles program. This would allow the SM-3 Block 2 to achieve velocities of 7.5 kilometers per second, which are much more advantageous for boost-phase intercepts. Using that as a goal will push space-related technologies along indirectly, provided this action is accompanied by an insistence that the sea-based interceptor fits in the current VLS tubes. MDA accepts the fact that 7.5 kilometers per second is needed but is promoting a 79- to 89-centimeter-diameter interceptor that would require an expensive and time-consuming retrofit of the entire Aegis VLS infrastructure. The SM-3 Kill Vehicle is also too heavy to achieve the desirable speed. Consequently, the panel strongly recommends development of the ATKV/SM-3 Block 2 combination, which eliminates the costly need for a larger missile and new VLS configuration to achieve a comparable capability.

American missile defense should become sufficiently robust to encompass both rogue state threats and the requirements for countering larger missile forces such as those of China. Although America faces no immediate threat from a resurgent Russia, the missile defense deployed by the United States should also possess the capacity to counter such threats if and when they emerge. A greater understanding of emerging ballistic missile capabilities around the world is necessary if U.S. missile defense architecture choices are to be adequate.

Finally, greater public awareness of past space-based missile defense research and development would help dis-
pel the widely held notion that such technologies are either unattainable or decades away. Such a review, undertaken by an independent commission outside the U.S. government, could also counter claims that a missile defense that includes space-based interceptors would be prohibitively expensive, for it would reveal the extent to which technological advances more than a decade ago could be revived and built upon to provide a missile defense for the twenty-first century.

VI. What are the implications of key issues raised by panel 2 for other panels?

Brilliant Pebbles technology was developed with a sophisticated and evolving threat in mind. The review process in place at that time demanded capabilities to meet a large-scale Soviet threat. By contrast, the current GMD system was designed to confront only the most rudimentary threats, and therefore lacks many of the sophisticated elements developed to counter Soviet missiles. Prudence dictates that the ground-based system should, at minimum, be improved to account for the fact that advanced capabilities known to exist in the Soviet Union more than a decade ago may since have leaked out to rogue states. Moreover, advances in China and Russia over the past decade, both in new ICBMs such as mobile systems and countermeasures technology, could also become available to states hostile to the United States. It follows that future U.S. missile defense architectures will need to hedge against such developments.

Finally, too little attention has so far been paid to the possibility that more sophisticated threats to U.S. security could emerge, or are already emerging. The existing ground-based missile defense system will leave us ill prepared to respond to such eventualities unless it becomes part of a layered missile defense with sea- and space-based intercept components.
Missile Defense & Space Relationships

American Security and the Geopolitics of Space

Access to a secure space environment is indispensable if the United States is to deploy a robust, layered missile defense. It is essential not only to assure that the United States will be able to use space for missile defense, but also to develop the means to protect other space-based assets and infrastructure. Space has become an arena of crucial importance to the United States both for commercial purposes and for national security. Just as it must maintain capabilities to defend its interests in the air, at sea, and on land, the United States needs to defend its space-based assets. At the same time we must deny the hostile use of space by our enemies. Just as land, the seas, and the air have been conflict arenas, space is changing how wars are fought and where they will be fought.

This section addresses the role of space in twenty-first century U.S. national security strategy and its essential contributions to future missile defense. Space offers unique opportunities for a global missile defense. The obstacles to space-based missile defense lie primarily in the political arena rather than in technological limitations. This section examines issues that must be addressed if the United States is to deploy a missile defense that includes space-based interdiction capabilities.

Present U.S. Space Strengths

The United States is the leading space power, and as such it depends more on space than does any other nation, a situation that leads inevitably to both vulnerabilities and opportunities. The U.S. position in space has grown out of numerous strengths developed over more than five decades. These strengths fall into two broad, overlapping categories: (1) military force enhancement; and (2) commercial utilization of space. Because of the dual-use nature of these technologies, it is not easy to separate their military applications from their commercial ones. Therefore, the failure of the United States to remain in the forefront of space technologies would have both military and commercial implications. Advances in the military or civilian sectors will overlap, intersect, and reinforce each other. Consequently, the development in the United States of a dynamic and innovative private-sector space industry will be indispensable to future U.S. space leadership. Nevertheless, the ability of the U.S. military to contribute to, and benefit from, such a space technology base will depend on its focus and priorities. The availability of technologies does not lead inevitably to their exploitation. America may fail to move forward to exploit technological opportunities and breakthroughs. Such choices may be based on political or other considerations, whether well founded or the product of mistaken assumptions about what competitors or adversaries will or will not do.

Just as control of the seas has been essential to the right of innocent passage for commerce, the ability of the United States to maintain assured access to space and freedom of action in space will depend on space control. Given the already extensive importance of space for commercial and military purposes, as well as its prospective role in missile defense, the United States must maintain control of space in the twenty-first century. This commitment to space control is neither new nor destabilizing, despite claims to the contrary.

The Security Environment in Outer Space

“Space capabilities are inextricably woven into the fabric of American security, scientific and economic activity,” then-Lt. General Robert Kehler, deputy commander of U.S. Strategic Command, told a congressional subcommittee in 2006. In particular, the U.S. military has very effectively fused its terrestrial warfighting capabilities with space-based communi-

cations, navigation, and reconnaissance capabilities. Space systems support significant missions in (1) environmental monitoring; (2) communications; (3) position, navigation, and timing; (4) integrated tactical warning and attack assessment; and (5) intelligence, surveillance, and reconnaissance for the U.S. military. The successful integration of these missions into real-time use by American military forces has fundamentally changed the ways they train and fight.

This dependence renders the satellite and ground support systems that provide these capabilities attractive targets for adversaries. Further accentuating this attractiveness is the fact that our space systems are vulnerable to denial of use, disruption, and physical destruction. Strikes against ground stations and launch systems would impede the receipt of information from space and the ability to reconstitute or augment capabilities in space. Orbiting satellites could be harmed by EMP effects of the detonation of a nuclear weapon in space, use of micro-satellites to attack our satellites, employment of space mines, or ground- or space-based lasers. The operations of satellite systems or the reliable transmission of data between the satellite and the ground can be disrupted by electronic means via jamming, spoofing, or lasing.

As noted in section 1 of this report, the electromagnetic pulse effects of even a single nuclear weapon exploded at high altitude above or near the United States would disrupt the electrical power systems, electronics, and information systems on which we vitally depend, producing catastrophic damage from which recovery would be protracted, painful, and potentially impossible. Space systems would also be vulnerable to EMP effects resulting from one or more nuclear detonations at high altitudes. Satellites in low-earth orbit are considered to be especially at risk from the collateral radiation effects of an EMP attack. Commercial satellites are vitally important to support such governmental services as weather forecasting and communications, emergency response services, and military operations. The destruction or disabling of such satellites would have possibly catastrophic implications for homeland security and for the U.S. military. The ability to prevent an EMP attack from being launched against such assets must become a national priority. Missile defense should form an essential part of any strategy designed to deter and interdict EMP attacks.

Although space is already extensively used for military purposes, the notion that space differs fundamentally from land, sea, or air with regard to the deployment of weapons is symptomatically received in some quarters. The desire to preserve a sanctuary in space, defined as keeping space free from military activities, gives rise to policy and programmatic recommendations that lack logical foundation and are contrary to U.S. interests. This includes the contention that the weaponization of space is, or should be, prohibited or drastically limited by international treaties. The result can be seen in efforts – such as the Space Preservation Act, first introduced in the U.S. House of Representatives in 2001 and reintroduced in May 2005 – that, if enacted, would have the effect of prohibiting the United States from developing, producing, or deploying space-based weapons and their components and would pave the way for an international treaty impeding or preventing U.S. use of space for national security purposes, including missile defense – enacting once again prohibitions against

Several groups and organizations have proposed a variety of legal regimes and treaties that seek to block the “weaponization of space.” For instance, in May 2003 the Pugwash Workshop on Preserving the Non-Weaponization of Space suggested several legal options, such as the passage of two UN General Assembly resolutions, the first endorsing a non-interference policy with all satellites currently in space, and the second prohibiting the testing of anti-satellite weapons (ASATs); a protocol to the 1967 Outer Space Treaty that explicitly bans non-weapons of mass destruction (WMD) space weapons (the treaty currently prohibits the space deployment of WMD); and a separate, stand-alone treaty that would ban the development and deployment of space weapons. See the “Pugwash Workshop Report on Preserving the Non-Weaponization,” 2003, http://www.pugwash.org/reports/sc/may2003/space2003-report.htm (as of November 12, 2008). Also, the Federation of American Scientists’ (FAS) Panel on Weapons in Space called for an international treaty banning ASATs, and for research to determine the verification parameters (that is, intrusive inspections on the ground, at launch sites, and potentially in orbit) of a workable space treaty. See Federation of American Scientists, Ensuring America’s Space Security, September 2004, http://www.fas.org/main/content.jsp?formAction=297&contentId=311 (as of November 12, 2008). It should be noted that the terms “militarization” and “weaponization” are distinct concepts, the first referring to the use of space for “military purposes” and the second – a subcategory of the first – to the basing in space of military weapons. In their report, the FAS panel acknowledged that space has been “militarized” ever since the launching in 1957 of the Sputnik, since the satellites and whole orbital formations launched and fielded by both the United States and the Soviet Union since then can be described as “general-purpose military space systems” (see “Background: The Debate over Weaponizing Space,” in Ensuring America’s Space Security). But the FAS panel claims that space has not yet been “weaponized,” since these systems are not intended to engage hostile targets, nor do they pose an offensive threat in or from space. However, as noted in this section, space has already been weaponized because it has been used in the transit of ballistic missiles, which fly a large portion of their trajectory through space.

Missile Defense, the Space Relationship, and the Twenty-First Century
space-based missile defense that were removed with the termination of the ABM Treaty.

It has been argued speciously that, since some space-based weapons could be used to attack targets in the atmosphere, at sea, or on the ground, they should be banned. Such reasoning, if it had been applied to maritime forces, would have excluded naval vessels with the ability, like space-based systems, to attack targets thousands of kilometers away. These naval systems include surface vessels and submarines armed with missiles and weapons of mass destruction (WMD) warheads. They have vast, over-the-horizon destructive capacity, just as space-based systems could destroy far distant targets. For example, directed-energy weapons would be able to destroy targets either in space or on Earth at great speeds.

However, whether directed-energy weapons are offensive or defensive, like surface ships and submarines, depends on how they are used. Space-based directed-energy missile defense systems, deployed to destroy ballistic missiles launched against the United States, cannot be deemed offensive systems. To argue otherwise is to equate those who would launch such an attack using missiles armed with WMD warheads with those who seek to defend themselves from such an attack. Equally absurd is the notion that the United States can, and should, take the lead in banning space-based systems and thus provide an example to the international community. Here the assumption is that the United States can establish global regimes that will strengthen or create international norms against the weaponization of space. The burden of proof that such an American approach would achieve its objectives is not supported by the history of conflict. The ability of states and other actors to utilize new geographical arenas, whether at sea, on land, or in the air, has led to conflict and competition based on available technologies in these diverse settings. At the same time, it is suggested that a decision by the United States to forego the deployment of space-based assets will lead to comparable restraint on the part of others. It is equally plausible to suggest that such self-abnegation by the United States will only encourage others to fill the resulting political vacuum. This debate is discussed in greater detail in the next two sections of this report.

Moreover, the drive to restrict U.S. access to space, whether for missile defense or for broader missions, is fundamentally flawed not only because space has been used for military purposes for several decades but also because space has become an arena for conflict regardless of U.S. policy. It was Nazi Germany, not the United States, that was responsible for the initial transit through space, accomplished by the V-2 rocket. The weaponization of space began in the closing months of World War II in Europe when German V-2 rockets passed through the edge of space en route to their targets. More than a decade later, in 1957, the Soviet Union, not the United States, launched the first orbiting satellite, Sputnik, ushering in a space age in which nearly all space platforms have some potential military use. Space-based satellites, which are critically important to U.S. national security in the twenty-first century, have civilian as well as military applications. Although the United States is at the forefront of space technology in the early twenty-first century, this clearly was not always the case, nor is it inevitable that such dominance will continue. Like the early V-2, today’s ballistic missiles fly a large part of their trajectory through space en route to their targets. Furthermore, both the Soviet Union and the United States tested anti-satellite (ASAT) systems as far back as the 1950s. Russia continues to operate ASAT systems initially deployed by the Soviet Union. As noted later in this section, other countries, China in particular, are developing space programs to intercept U.S. space capabilities. In addition, technologies capable of destroying/disrupting U.S. space operations will increasingly be available to a range of other actors, including terrorist groups.

The United States must protect its critically important space systems, which are obvious targets for future adversaries who will seek to eliminate the edge those assets give our military forces. This asymmetric U.S. advantage is well known to even limited powers who confront U.S. interests, and they will inevitably strive to reduce that advantage if they seek to attack the United States – and today’s technology makes that possibility a serious concern. Perpetuating the well-known vulnerability of U.S. space assets is, therefore, an unacceptable security risk. The crucial importance of space was clearly highlighted in the early 1990s by the results of the first Gulf War – which the then-Air Force chief of staff, General Merrill McPeak, called the first “space war.” More recently, space-based assets, including communications and surveillance systems and sensors, again were essential to the rapid and decisive military victory in Iraq. Operation Iraqi Freedom would have been impossible to conduct with lightning speed and low casualties in the absence of space-based assets providing for unprecedented connectivity among integrated military systems. U.S. space systems are also playing a vital role in the current

counter-insurgencies in Afghanistan and Iraq. The importance of space systems for the United States and its allies lies in their utter ubiquity throughout the spectrum of conflict at the tactical, operational, and strategic levels of war.

The overriding importance of space to our national security was underscored in January 2001 by the "Report of the Commission to Assess United States National Security Space Management and Organization" (the Space Commission) headed by Donald Rumsfeld. How the United States develops space for civil, commercial, defense, and intelligence uses will have profound implications for national security in the next several decades. The commission emphasized that the United States has key national security interests in:

- Promoting the peaceful use of space
- Using space to support U.S. domestic, economic, diplomatic, and national security objectives
- Developing and deploying in space the means to deter and defend against hostile acts against U.S. space assets and against the use of space for activities hostile to U.S. interests.

The commission concluded that "the present extent of U.S. dependence on space, the rapid pace at which this dependence is increasing, and the vulnerabilities it creates, all demand that U.S. national security space interests be recognized as a top national security priority." The importance of space to U.S. national security and economic well-being was underscored again in the Bush administration's 2006 U.S. National Space Policy. The policy laid out specific goals, among them the continued ability of the United States to operate unhindered in space; the strengthening of U.S. space leadership; and the fostering of "a robust science and technological base supporting national security, homeland security, and civil space activities." The new space policy also acknowledged that "freedom of action in space is as important to the United States as air power and sea power" and that "the United States considers space capabilities – including the ground and space segments and supporting links – vital to its national interests."

The Rumsfeld Space Commission report and the national space policy are the latest manifestation of long-held views on national security space policy. Since the dawn of the space age, every U.S. president has embraced the belief that

9 Ibid, 1.

the United States is within its rights and obligations to protect and defend its national interests in outer space. Such actions do not preclude others from peaceful use of space for their own interests. The often muddled debate over the military uses of space frequently overlooks or intentionally ignores this crucial caveat.

Although the United States remains at the forefront of space technology and exploration, America's continued pre-eminence is not assured. Other states are engaged in programs intended to enable them to become twenty-first century space powers capable of challenging the United States. At least 35 countries have space research programs designed to augment existing space capabilities or lead to their first deployments in space. For example:

- India announced in June 2008 that it will boost its defense presence in space by developing a military space program to complement its already robust civilian space program. In October 2008, India launched its first lunar mission.
- Japan has launched four surveillance satellites and plans to launch two more in 2009. Japan also operates a satellite known as the Advanced Land Observing Satellite (ALOS), which is believed to provide positioning data to the Japanese military. Japan's parliament also passed a new space law in May 2008 that allows for non-offensive use of space to support national security.
- Russia has used its Soyuz rockets for commercial space launches since 1999.
- The European Union is building a 30-satellite navigation network, called Galileo, that – with the possible participation of China and other countries – has the potential to far exceed the precision of the U.S. global positioning system. Galileo is scheduled for completion by 2013.
With extensive Russian military help, Iran has a spy satellite, the "Mesbah," in geostationary orbit, which could potentially provide Iran with strategic intelligence that could be used in a future attack, for example, against Israel. In January 2005 Iran and Russia signed a $132-million deal for Russia to manufacture and launch a telecom satellite, the "Zohreh," by 2009. Iran attempted to place a satellite into orbit in August 2008, only to see the launch vehicle fail, but analysts believe they will apply valuable lessons in their next attempted launch.

As these examples suggest, knowledge about space systems, including the means to counter them, is becoming more widely available, and perhaps so too is the ability to disrupt U.S. space systems. What is clear is that whether or not the United States moves forward in space, other countries will do so.

China is developing or acquiring technologies for space-based military purposes in order to challenge the present U.S. technological dominance of space. This includes microsatellites (weighing less than 100 kilograms) for remote sensing and for networks of electro-optical and radar satellites; China has also shown interest in electronic/signal intelligence reconnaissance satellites. China hopes to have in excess of 100 satellites in orbit by 2010, and to have launched an additional 100 satellites by 2020. In another example of its burgeoning space capabilities, China launched its first manned spacecraft into orbit in October 2003 and a second manned flight in October 2005, and a third manned mission was successfully concluded in September 2008. Furthermore, it hopes to conduct space walks and docking missions with a space module by 2010, and to have a full space station by 2020. The Department of Defense’s review of Chinese military power notes that “China is developing a multi-dimensional program, to limit or prevent the use of space-based assets by its potential adversaries during times of crisis or conflict. Although China’s commercial space program certainly has utility for non-military research, it demonstrates space launch and control capabilities that have direct military application.”

China also has tested a direct-ascent anti-satellite weapon, as well as a ground-based laser capable of damaging and destroying satellites. In January 2007, China destroyed one of its aging satellites with a direct-ascent missile launched from inside China. This was not the first test of the direct-ascent capability: U.S. officials have confirmed that China conducted similar, but less successful ASAT tests between September 2004 and February 2008. Chinese scholars and even China’s own military offer a clear explanation for these investments in offensive space weapons. The Chinese military has extensively studied recent American military operations...
and noted their dependence on space-based systems, which led China to conclude that “the ability to neutralize American space systems quickly would permit a weaker Chinese military to deter, delay, degrade, or defeat the superior warfighting capabilities of the United States and ‘level the playing field’ in a shooting war.” Even as it attempts to restrict U.S. efforts through international arms control, Beijing maintains an obvious strategy designed to make China a twenty-first century space power.

Because a launch from the ground can be highly effective in destroying an object in space, verification of compliance in a treaty against such space weaponization would be difficult, and probably impossible. These capabilities could be used to paralyze U.S. civilian and military space systems that are crucially important for a variety of commercial and national security purposes. The loss of space-based satellites would have a dramatic effect on communications, whether for business or pleasure or for military purposes. Wireless telephones, pagers, and electronic mail would be disrupted. In addition, satellites that provide automated reconnaissance and mapping, aid weather prediction, track fleet and troop movements, give accurate positions of U.S. and enemy forces, and guide missiles and pilotless planes to their targets during military operations would have their services curtailed or terminated. In short, America’s commercial, intelligence, and military satellites, vital to twenty-first century national security, could themselves become the object of attack. As the Rumsfeld Space Commission pointed out: “If the U.S. offers an inviting target, it may well pay the price of attack... The United States is an attractive candidate for a ‘Space Pearl Harbor.’”

For many nations, the opportunity to acquire space weapons is growing as technologies become more readily available. Several countries already have ongoing space programs designed to provide a high-leverage response to U.S. military power. Their incentives to deploy space weapons are extensive; such capabilities could threaten present and future U.S. dominance, both in space and in the terrestrial arena. Space-based weapons in the hands of hostile states constitute an asymmetric capability designed to undermine U.S. strengths, including not only American air and maritime power projection assets, but also vital space-based sensors and communications satellites. Unless the United States chooses to abandon its superpower status, continued access to space as well as a growing U.S. presence in space, based on advancing technologies, will remain indispensable to national security.

Compounding the challenges from abroad is a weakening of the technological and industrial base on which American space power relies. Numerous reviews of U.S. space policy, programs, and budgets over the years have called for altering how space programs are budgeted and managed, changes in how space personnel are trained and the career paths available, and increased investment in research and technology. None of these concerns is new. Troubling signs of a weakening base for American space have been appar-

ent for some time. The absence of a peer competitor and the sizeable lead in space capabilities from Cold War-era investments gave policy makers, the public, and even military leaders a false sense of security and reinforced the impression that U.S. leadership would go unchallenged with only minimal attention.

Despite the national security importance of space, the United States has not put adequate resources into military space programs. Many of the approximately 100 U.S. national security satellites presently in orbit for military and surveillance operations are approaching obsolescence. Successor-generation models based on new and improved technologies frequently are delayed because they are over budget, behind schedule, and facing technical difficulties. The acquisition process for national security space programs is under severe strain, buffeted by excessive technical and schedule risk and unrealistic cost projections, leading the Defense Science Board to conclude that: “Government capabilities to lead and manage the acquisition process have seriously eroded.”

The deleterious results of a broken acquisition system are apparent throughout the space sector. The Space-Based Infrared System (SBIRS)-High and the Space Tracking and Surveillance System (STSS) are two cases in point. While both are key parts of the missile defense system to be deployed by the United States, they have had to be restructured because of large cost overruns, schedule delays, and technical problems. For example, SBIRS-High, which is replacing the Defense Support Program (DSP) satellites and will provide rapid early warning and ballistic missile trajectory data, is now projected to cost approximately $10 billion, well over twice the amount of earlier estimates. Cost increases in excess of 25 percent during the last quarter of FY 2005 forced the Pentagon to recertify the program in December 2005. For FY 2009, DoD requested $2.3 billion for the program, though the Air Force is currently exploring a potential alternative or early replacement for SBIRS-High called 3GIRS.

The STSS program, formally known as SBIRS-Low, will include up to 30 infrared satellites in low-earth orbit designed to detect and track missiles. In 1997 and 2001 reviews of the SBIRS-Low, the General Accounting Office (now the Government Accountability Office, or GAO) noted that the program was entering the product development phase with immature critical technologies and with an optimistic deployment schedule. However, in March 2005, the GAO determined that four of the STSS program’s five critical technologies were mature. MDA requested nearly $2.42 million for STSS for FY 2009, and the first fully developed satellites are currently not expected to be launched until 2016 or 2017.

Federal government investment in space-related activities totaled approximately $40 billion in 2007. Since 1998, the Department of Defense has increased its spending on space systems by more than $10 billion, growing from $12.3 billion in 1998 to $22.8 billion in 2007. Support for space situational awareness programs and operationally responsive space concepts has expanded in the wake of the January 2007 Chinese ASAT test, but the bulk of DoD’s expenditures on space are dominated by the global positioning system (GPS) upgrade, several communications satellites, and launch vehicles. While the top line for U.S. investments in space is growing, albeit slowly, analyses by the Defense Science Board, the GAO, and others reveal that those resources are not spent as efficiently or effectively as they could be.

The Rumsfeld Space Commission warned that the United States was not developing the military space cadre needed in the years ahead; a conclusion subsequently reinforced by the Walker and Allard Commissions. The aging aerospace

workforce, bleak prospects for the growth of the space market, and uncertain career paths for military personnel have drained talented workers, scientists, engineers, and managers from the space sector. Additionally, the Allard Commission highlights the limitations of the current system of managing military space programs.

In summary, the ability to threaten the United States in space will only grow in the years ahead. Small nations, as well as groups or even individuals, are increasingly able to acquire technologies and knowledge that could disrupt or destroy space systems and ground facilities. The United States could be surprised by the speed with which such capabilities are acquired by its enemies and by the rate in which its own capabilities decline. Such adversaries, especially if they are rogue states or terrorist groups, are unlikely to be bound by international agreements or global norms against the weaponization of space.

Commercial Activity in Space

Space has become an essential part of daily life. This includes satellites that transmit television images, provide weather forecasting data, emergency response, the infrastructure for the Internet, the mapping of the Earth’s surface, and global positioning information. Space technologies are transforming the process by which we conduct business and undertake research. The net result is greater productivity with important implications for economic growth, prosperity, and innovation. Access to space-based assets is essential for a broad range of private-sector activities, which will increase both in scope and intensity as a result of the emergence of technologies including smaller satellites and cheaper boosters, miniaturization, and greater economies of scale. The space infrastructure originally established with government funding has furnished the basis for both military and commercial applications. In the years ahead, the commercial sector is likely to provide innovative impetus that spills over into the military arena.

By the mid-1990s, global commercial revenues from space resulting from the rapid expansion of consumer services such as telecommunications and television were greater than the aggregate of government spending on space. In 2007 alone, spending on commercial space infrastructure, infrastructure support industries, and commercial satellite services (including direct-to-home television and GPS) totaled approximately $174 billion, accounting for nearly 70 percent of total global space spending. Alongside increased commercial spending on space, government space budgets have accounted for a steadily decreasing percentage of global space spending. In the past two years alone, the governmental share of global space spending has slipped by 8 percentage points, from 39 percent of global space spending in 2005 to 31 percent in 2007. Over the same period of time, aggregate government spending on space actually increased by $8.25 billion. The fact that government’s share of space spending decreased 8 points in spite of a 12 percent boost in spending further underscores the impressive growth of the commercial space sector. This means that governments will have less control over access to such services as high-resolution imagery of the Earth’s surface, which can be used for civilian or for military purposes. Growing commercialization of space will make such access more widely available as commercial investment in space technologies increases relative to that of governments.

Governments in turn will rely increasingly on the private sector for a broader range of space products, services, and technologies. While government-sponsored innovation provided the initial catalyst, especially during the Cold War, the private sector will play a growing role in the development of space technologies that have potential military applications in the years ahead. Dual-use space technologies will spin off from the commercial to the military sector in unprecedented ways. This includes areas such as communications and imaging satellites and new launch vehicles as well as telecommunications, the broader availability of imagery, and GPS technologies, products, and services. The private sector will develop new products such as satellites and at the same time offer services such as we see today with telecommunications and imagery. In some cases government programs will produce infrastructure such as satellites and GPS, with the private sector then benefiting from such capabilities. Likewise, the government, including the U.S. military, will contract with the private sector to lease communications and other capabilities. For example, the U.S. military recently contracted with Paradigm Secure Communications, based in the United Kingdom, in an effort to augment the capabilities of the Defense Satellite Communications System (DSCS). The deal, worth up to $48 million over three years, will provide the military with X-band communications using Paradigm’s fleet of Skynet satellites. Currently, the U.S. military receives about 80 percent of its satellite communications capacity from commercial providers.

Of course, these basic trends in the growth in a commercial space sector do not guarantee that the United States will be the greatest beneficiary. This obviously depends on strategic choices taken by the United States to exploit such technologies for military purposes. Others bent on benefiting from space technologies will increasingly have access to a global commercial space sector from which they are likely to be capable of spinning off technologies for military purposes if they choose to do so. Therefore, whether or not space is “weaponized” will be increasingly beyond U.S. control as dual-use space technologies become more readily available.

International Law and Space Geopolitics

Nearly two generations ago, as the United States and other nations recognized that space was becoming an important arena for national security, an effort was made to regulate the utilization of space for military purposes in the form of the Outer Space Treaty.48 This treaty contains several provisions directly related to military activities and weapons in outer space – none of which, however, would preclude the United States from deploying space-based missile defense.39 Specifically, the parties agreed not to place in Earth orbit any object carrying nuclear weapons or other types of WMD, and not to install such weapons on celestial bodies or station them in outer space. The treaty further prohibits the establishment of bases, installations, and fortifications, the testing of weapons, and the conduct of military maneuvers on the moon or other celestial bodies. However, because the treaty does not place prohibitions on the use of space for the transiting of ballistic missiles that fly part of their trajectory through space, it follows that the treaty does not prohibit the United States from building a space-based defense against ballistic missiles. Likewise, there is nothing to suggest that the United States would be prevented by the Outer Space Treaty or by customary international law from defending itself on Earth or in space so long as these activities fall within its inherent and longstanding right of self-defense and collective self-defense of others. As laid out in a 1985 report by the UN secretary general, “Military activities which are consistent with the principles of international law embodied in the Charter of the United Nations, in particular with Article 2, paragraph 4, and Article 51 [the right of individual and collective defense] are not prohibited by the Convention on the Law of the Sea.”40

The preamble to the Outer Space Treaty refers to “use of outer space for peaceful purposes.” This has been widely interpreted to mean that defensive, as opposed to aggressive, activities are permitted. “Peaceful purposes” refers to “nonaggressive activities” undertaken in compliance with the United Nations Charter, which clearly emphasizes the inherent right of nations to provide for their self-defense and is so noted in the Outer Space Treaty itself. To assert otherwise – that the term “peaceful purposes” bans defensive systems such as space-based missile defense – would be analogous to banning military vessels from the high seas based on the same principle. Article 88 of the United Nations Convention on the Law of the Sea, however, states that “the high seas shall be reserved for peaceful purposes.” This may include the deployment of armed vessels whose purpose is not the conduct of aggressive warfare but for defensive purposes. As one of the most widely accepted international agreements, this treaty does not prohibit navies from operating on the world’s oceans.

Equally important, neither the Outer Space Treaty nor any other instrument of international law prohibits the testing, development, or deployment of space-based missile defenses or other elements of a space protection strategy because such systems do not constitute weapons of mass destruction. Nor does the legal regime prohibit steps necessary to protect America’s space assets or other resources from hostile actions. In fact, these programs have the opposite purpose: they are systems that provide defense against weapons of mass destruction. It was the ABM Treaty that embodied the specific legal mechanism prohibiting space-based missile defense. In turn, the withdrawal of the United States from the ABM Treaty removed any legal obstacle to building a missile defense that includes space-based elements.

Russia and China are pressing for a new prohibition on the development and deployment of space weapons, even preparing a draft treaty for consideration in the United Nations.41 This periodic proposal from Russia and China is included as appendix E.

38 Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies, 610 UNTS 205, entered into force October 10, 1967.
39 For a detailed discussion of the legal arguments that have been advanced against defense of U.S. space-based assets, as well as a critique of such arguments, see Robert F. Turner, “International and National Security Law: The Campaign to ‘De-Weaponize’ Space: Why America Needs to Defend Our Space Assets and Our Right to Deploy a Space-Based ABM System,” Engage 5, no. 1 (April 2004). Included as appendix E.
41 See, for example, a summary of the latest discussion at the UN, United Nations Organization, “Preventing Outer Space Arms Race Would Avert Grave Danger; Possible New Verifiable Bilateral, Multilateral Agreements Needed, Says Draft Text in First Committee,” October 20, 2008, http://un.org/News/Press/docs/2008/gadis3371.doc.htm (as of November 12, 2008).
tended to constrain the United States from protecting its space assets and also would have the effect of denying the use of space for missile defense. Such a treaty is neither enforceable nor verifiable. Defining what constitutes a space weapon is problematic. For instance, the proposed treaty would not include the ASAT capability demonstrated by the Chinese in 2007. During negotiations with the former Soviet Union on space weapons, the Soviets argued the space shuttle could be used as a weapon. In space, any object with maneuvering capability is potentially a “weapon” as it could be directed to collide with another object, subject only to the limits of fuel and physics. The United States has long held the view that these problems render space arms control impractical and unnecessary.

In recent years, support for a code of conduct to regulate behavior and actions in space has emerged as an alternative for arms control. Proponents of the code believe it is needed to develop “rules of the road” to “prevent incidents and irresponsible activities.” The code’s focus on traffic management and debris mitigation, for instance, raises issues of importance to the United States, and Washington is already engaged in numerous ongoing efforts to tackle these, questioning the need for the code or additional rules. While there are benefits potentially to be had, the “rules of the road” approach is intended to restrain. Prohibitions on debris-generating activities, for example, could foreclose development of a space-based missile defense whose interceptions would occur in space, generating debris. The prohibition against harmful interference could be used to preclude the deployment of any counterspace capability, offensive or defensive.

Next Steps toward Space-based Defense

In the post-ABM Treaty era, the United States can and should take several steps to assure its continued military and commercial access to space, including the deployment of space-based missile defense interceptors. While reaffirming the “peaceful uses of space” requirement set forth in the Outer Space Treaty, the United States should reject efforts to counter its present advantages in space by agreements that would further restrict the use of space.

Furthermore, the United States should reject bilateral or multilateral efforts that would have the tangential effect of restricting American space activities. One example is the November 2002 Hague Code of Conduct (HCOC) signed by the United States and Russia, among others. The Russians, however, have already contravened this specific agreement by announcing that they would no longer provide advance notice of ballistic missile launches to other signatories of the HCOC. The HCOC’s entirely legitimate purpose is to minimize the consequences of a false missile attack warning by calling on member states to “exercise maximum possible restraint” with respect to ballistic missile and space launch vehicle launches and provide other member states with advance warning of such launches. This agreement, however, should not be expanded to an interpretation that regulates space launches to such an extent that it is applied to systems now being designed to provide “better, faster, cheaper” access to space.

The United States should develop a national space policy that speeds the transformation of the U.S. military into a force better able to deter and defend against a spectrum of evolving threats against the U.S. homeland and in space. This policy must recognize that space is essential for the collection of intelligence for crisis management. Recognition of the nexus between commercial and military uses of space is critical, as is recognition that the U.S. government depends vitally on the commercial space sector to provide essential national security services. Most importantly, the policy must outline programmatic, policy, and budgetary guidance to address a security environment where U.S. space systems are especially attractive targets to America’s enemies.

If it is to remain a space power, not only must the United States be capable of detecting and deterring such an attack (that is, situational awareness, a capability that does not presently exist in most U.S. space assets), it must also possess the means of defending against an attack, identifying the source, and quickly recovering and reconstituting vital assets. This means that the United States must be able quickly to replace those disabled or destroyed space-based assets that it cannot easily defend. Investigating development of redundant capabilities, hosting payloads on com-

42 These include a February 2008 treaty proposed by Russia and China that seeks to ban weapons in outer space—an effort aimed at preventing the deployment of space-based interceptors and other antiballistic missile technologies designed to protect the United States from ballistic missile attack. Agence France-Presse, “Russia, China Propose New Treaty to Ban Arms in Space,” February 12, 2008, http://afp.google.com/article/ALeqM5gN-OVcg1WNZ4a_E6fDr_NYiJDcQ
44 The code is described at the Henry Stimson Center, http://www.stimson.org/space/?SN=WS200702132113
mercial satellites, or integrating allied space systems could reduce the likely impact of a strike against space assets.

Both for missile defense and for space more generally, the United States will need to make major new investments in research and technology programs in the years ahead. As the Rumsfeld Space Commission concluded, since the 1980s there has been a dramatic decrease in the aerospace sector’s share of the total national research and development investment, shrinking from 20 percent to less than 8 percent. Compounding this decline, U.S. companies are investing more heavily in efforts to win modernization contracts based on existing technologies, rather than investing in leap-ahead technologies that would dramatically transform the U.S. space program.

A concerted effort is needed to assure that the U.S. space industry can produce systems at least one generation ahead of its international competitors.

For example, if the United States is to remain dominant in space, new approaches that reduce the cost of building and launching space systems by emphasizing the miniaturization of those systems must be found. New sensors capable of detecting and tracking smaller, moving, and concealed targets, together with advanced surveillance and defensive and offensive technologies for space control and information operations, will be needed. In recent years, funding for boost-phase intercept space-defense programs has been only a miniscule portion of the total missile defense budget. The funding sought by the George W. Bush administration, extremely limited to begin with, has not been supported by the Congress except for a modest $5 million appropriation for the study of space-based defenses that was approved in 2008.

The result is a major shortfall in the R&D needed to sustain space-based missile defense and other aspects of the U.S. space presence.

As discussed in greater detail in section 6, a global missile defense should be open to other countries predicated on the assumption that space, like the high seas, is an arena for common security. The United States should reaffirm the recognition contained in the Outer Space Treaty that there is a common interest in the use of outer space for peaceful purposes — with missile defense being one of these peaceful purposes.

Indeed, far from sparking a costly and deadly arms race, the deployment of a robust, global, space-based missile defense is likely to make it more expensive, and therefore less attractive, for other states to build missiles or to engage in regional arms races based on the deployment of missiles.

There is no empirical or historical basis for the contention that such an effort will lead other states to step up their missile-related programs, leading to an escalating race to deploy missiles designed to overcome whatever missile defense is deployed by the United States. In fact, following the ABM Treaty in the 1970s, the Soviet Union nevertheless deployed large numbers of advanced missile systems, negating the logic that the ABM Treaty reduced the incentive or need to deploy new generations of missiles designed to defeat deployed missile defenses. The ABM Treaty codified a strategic relationship of mutual vulnerability in which the Soviet Union nevertheless built large numbers of additional intercontinental ballistic missiles and nuclear warheads whose purpose was to increase U.S., not mutual, vulnerability — and to assure that, in the event of nuclear war, the Soviet Union would have had strategic superiority.

Contrary to the assertions of many of its proponents, the lesson of the ABM Treaty is that in the absence of a U.S. missile defense capability, other states have been developing missile programs without having to take into account an American defense. This has provided an array of competitors with a relatively cheap option of developing even primitive missiles in order to acquire an asymmetrical advantage over the United States.

The 30-year experience of the ABM Treaty, together with other efforts to restrict weapons proliferation and deployment by international agreement, does not give credence to efforts now underway to impose new international legal prohibitions against space-based missile defense. If past experience is any indicator, such efforts are more likely to place onerous restrictions on the United States, as happened with the ABM Treaty, than to provide universally accepted norms to govern the peaceful use of space. Furthermore, access to space, as well as space control, is key to future U.S. efforts to provide disincentives to states and terrorist organizations seeking WMD and their delivery systems. Given these factors, space control is crucial to U.S. national security in the twenty-first century, together with space-based missile defense.

Conclusion

Historically, leading powers have been superseded by aspirant nations. The major geopolitical options that become available have been exploited by one nation or another, by some, but not by others. Those nations that are most successful in recognizing and acting on such options have become the dominant powers of the age. Others that have failed or have consciously decided not to do so have been relegated to inferior political status. A salient case in point is ocean
navigation and exploration. The Chinese were the first to become preeminent in this retrospectively pivotal area during the early Ming dynasty. Almost a century before Columbus sailed to the Americas, the Chinese made a total of seven voyages as far as the east coast of Africa. However, this lead was allowed to be dissipated, with historic consequences for China still felt half a millennium later. The subsequent assumption of this leading maritime role first by Portugal and then by Spain brought these nations to geopolitical preeminence that was eventually lost to other European powers, including Great Britain.

48 For a recent account of China’s maritime exploration, see Frank Viviano, “China’s Great Armada,” National Geographic, July 2005, 24–46. “All of the ships of Columbus and da Gama combined could have been stored on a single deck of a single vessel in the fleet...”. According to some maritime experts, “The Chinese ships may have been up to 400 feet in length and 170 feet across the beam, with nine masts and a displacement of at least 3,000 tons, ten times the size of Vasco da Gama’s flagship,” 35.

In the twenty-first century, maintenance of its present lead in space is indeed pivotal to the geopolitical, military, and economic status of the United States. Consolidation of the preeminent U.S. position in space similar to Great Britain’s dominance of the oceans in the nineteenth century is not an option, but rather a necessity for the United States, for if not the United States, some other nation, or nations, will aspire to this role, as several others already do. For the United States space is a crucially important twenty-first century geopolitical setting that includes a global missile defense.

We turn next to the political setting that has shaped the domestic debate in the United States about missile defense.

Panel 3 Report

With Section 3, Missile Defense and Space Relationships, as background, Panel 3 discussed space-related missile defense issues.

Panel Members
Chair: Mr. Jeff Kueter
Mr. Robert Turner
Dr. Gregory Canavan
Dr. Pete Hays
Dr. John Sheldon

1. What are the implications of the key issues raised in section 3 for missile defense, and specifically for space-based missile defense, as we look beyond 2008?
There is a continued need to raise awareness of the primacy of space, not only as the most effective option for missile defense, but also for its critical role in other aspects of U.S. defense operations. Space must be recognized as a vital and central component of overall U.S. national security. Commentators, politicians, and even some in the military often view space as a desirable addition to existing weapons systems, but fail to sufficiently appreciate either its current or likely future contributions.

The vulnerability of space-based assets is becoming clearer to the public and policy makers alike. The test of an anti-satellite capability by China in 2007 as well as growing realization that prospective adversaries will target our space-based capabilities during times of crisis should lead to greater focus on what can and should be done to protect and preserve U.S. satellites. Space-based missile defenses can be an important element of the defensive strategy.

The United States has greatly expanded its use of spaceborne information for commercial and security purposes in recent years. This is only expected to grow in coming years. For the military, space systems collect and distribute surveillance and reconnaissance data, and they facilitate communications and data transmissions. As demonstrated in the first Gulf War, the U.S. military has integrated spaceborne information into real-time military operations with great effectiveness. This integration enables precision-guided munitions, for example. The net benefit of this exploitation of space to the military is large. With munitions guided precisely to their targets, fewer troops are needed to perform a mission, the number of unintended causalities is reduced, and the probability of successfully destroying the target is increased. Real-time, large-bandwidth data transfers enhance combat effectiveness by providing warfighters with more comprehensive and detailed information and analysis about combat conditions, terrain, and enemy movements.

Obvious examples abound of the use of a space system by businesses and consumers. For instance, commercial applications of satellite navigation and timing are expanded as a result of the global positioning system (GPS) in the automo-
tive, logistics and transportation, and financial and banking sectors. Satellite radio and television services are growing in popularity as well. Earth observation and mapping services provide accurate pictures of the Earth’s surface for use in a variety of applications. Supporting these uses are satellite manufacturers and operators, and launch service providers. The Aerospace Industries Association estimates that space-related activities by the U.S. aerospace industry amounted to $41 billion in 2008. More significant for the U.S. economy is the effect of the opportunities that space provides. For instance, the Federal Aviation Administration is examining how to outfit commercial aircraft with GPS receivers to enable more efficient movement of air traffic, which could save billions of gallons of fuel and countless hours in flight.

America’s competitors clearly recognize our growing use of space, perhaps even our dependence on space, and have begun to take advantage of the vulnerabilities created by that dependence. Chinese security literature, for instance, has pointed out that Beijing’s pursuit of a comprehensive security strategy is focusing on the critical role of “information” in modern warfare and the linkages with space assets.9 When these considerations are applied directly to the question of competing against the United States, the Chinese have concluded that while American conventional military prowess is formidable, it is also vulnerable. Having the capability to degrade or deny American access to its satellites or the information they provide, the Chinese have concluded, would reduce the effectiveness of the U.S. military. To that end, China is investing in a range of counter-space capabilities, including the anti-satellite system demonstrated in January 2007.

The continued expansion of access to space launch capabilities and the proliferation of nuclear weaponry open another challenge to the United States in space. A nuclear weapon detonated in space would produce a high-altitude nuclear detonation that would seriously damage satellites in low-earth orbit, according to the EMP Commission. An adversary seeking a surprise attack or looking to destabilize or destroy the American economy might find such an option very attractive.

Given America’s growing reliance on these systems, an offensive strike against U.S. space assets can be expected to exact a disproportionate price on U.S. forces. Furthermore, two other related facts render this a particularly dangerous situation. First, the source of an attack on U.S. space assets may not be readily identifiable, as most U.S. space systems lack the capacity for situational awareness of their immediate environments. Assigning blame for the purposes of retaliation, diplomatic or otherwise, may therefore be exceedingly difficult. Second, the weakening of the nation’s aerospace infrastructure, diminished space launch resources, and a waning capacity for innovation make it exceedingly unlikely that these capabilities could be reconstituted quickly.

A space-based missile defense is one way to respond to the challenge of missile-based threats to space assets. By providing the ability to destroy a terrestrially based ASAT system, such as the one tested by the Chinese, or a ballistic missile targeting space objects, a space-based defense can offer a measure of protection.

II. What are the implications of the key issues raised in section 3 for overall U.S. national security?

Threats to and vulnerabilities of U.S. space assets is of the utmost significance to U.S. national security. America’s adversaries are seeking approaches to counter our preponderant conventional power. Ballistic missiles and the targeting of space systems offer an effective means of achieving an advantage over the United States.

A combination of hubris and apathy stands in the way of the development of a comprehensive strategy for space. The United States presently holds a dominant position in space, flying more satellites of greater sophistication than any other country. American investment in space activities dwarfs those of the nearest U.S. competitors. These factors and the history of accomplishment underlying them generate a confidence that, while deserved, may not be sustainable, given the rising challenge to U.S. leadership, inefficient and ineffective management and program acquisition, and a lack of urgency to confront the observed weaknesses in the U.S. military and civilian space program.

The American public, however, is under-informed about the role space plays in safeguarding the United States and its interests, either because it has not been made aware of the potential threats or because it operates under the assumption that the U.S. government has programs in place to defend against those threats. Improving the level of public dialogue would help correct this situation, as would a comprehensive strategy designed to educate the public on these issues.

III. What steps need to be taken in light of these issues to achieve space-based missile defense, in both the immediate term and the longer term?

Several steps dealing with both space control and missile defense can immediately be undertaken by the United States. The first is to identify and accelerate the acquisition of systems that could improve situational awareness (SSA) in
space. These capabilities do not presently exist in most U.S. space assets, which were deployed at a time when such requirements were perceived as unnecessary. In recent years, there is a growing appreciation of the need for improved SSA capabilities, resulting in growing budgets for these programs. Such capabilities are being embedded in new systems, but it will take decades to turn over the current asset base. Additionally, upgrades of existing systems with situational awareness may prove difficult, if not impossible. Nonetheless, a complete analysis of the options to improve situational awareness, including the possibility of placing them on the next generation of early warning and tracking satellites (that is, Space-Based Infrared System-High and Space Tracking and Surveillance System), is necessary.

Second, the United States should avoid legal regimes that may curtail its ability to act in space or that would cordon off space as a unique environment. Efforts to constrain the freedom to protect U.S. space assets through international arms control or domestic, unilateral restrictions run contrary to a half-century of U.S. national security space policy and are not in the national interest. Further, considerable caution is needed when considering efforts to establish or expand rules and regulations governing space activities. Undoubtedly the emergence of new actors and activities in space demands enhanced governance of space activities, but proposals to modify the existing regime should be considered carefully and reviewed for their probable effect on U.S. freedom of action in space.

Third, the Missile Defense Agency should fully exploit its proposed space test bed. Given MDA’s retreat from space-based defense, this initiative is the only viable space program in the MDA portfolio, and it holds the potential to provide assets to link the missile defense and space control missions. Moreover, the development, demonstration, and testing of lightweight kill vehicles and efficient engines are a critical near-term priority to validate the technical viability of a space-based defense.

Fourth, a campaign to educate the public about the increasing threats to U.S. space assets would greatly facilitate changing the political landscape. Steadfast leadership constitutes a major factor in the success of such an effort, but the required level of commitment is not in place.

Finally, consideration of a comprehensive space protection effort is needed. Such an effort would examine:
• Ways to protect and harden ground stations
• Improved responses to cyber and electronic warfare (jamming, spoofing, and blinding)
• Strategies to build up redundant systems, to reduce the probability that critical services could be lost in the event of an attack in space
• Improvements in space situational awareness to better “see” and “understand” the space environment
• The viability of military payloads hosted on commercial satellites
• Improved integration of space assets with key allies
• Quick launch and reconstitution options

IV. What are the key obstacles to space-based missile defense and how can they best be addressed and overcome?

Several obstacles must be overcome in the pursuit of space-based missile defense or a comprehensive space control strategy. One is the argument that either the deployment of a missile defense in space or explicit recognition of space control would prove destabilizing. Another is the position held by policy makers that arms control or the pursuit of “rules of the road” is sufficient to protect U.S. interests alone. A third is bureaucratic inertia and competition over control of space activities that result in poorly managed acquisition programs and inefficient allocation of resources and priorities. Finally, demonstration of the technical ability to efficiently achieve the stated mission is needed to refute the argument that space-based defenses are illusory or that space protection and control are impossible.

V. Are there opportunities that can be seized to press forward with space-based missile defense?

The Chinese ASAT test in January 2007 and, to a lesser extent, the USA-193 satellite destruction mission in February 2008 have sparked interest in the threats and challenges to the United States in space. This interest has led to increased budgetary support for SSA activities, together with congressional approval of a study of space-based missile defense concepts. Continuing to capitalize on this interest requires successful articulation of why those steps are insufficient and identification of policy and programmatic efforts consistent with a broader space strategy.

Participation in the international dialogue over space debris, traffic management, and related topics can help shape those conversations in ways that support U.S. interests. It also will help dissipate the need for engagement in broader arms control dialogues.

VI. What are the implications of key issues raised in Panel 3 for other panels?

There is a clear case for a robust program to develop space systems for the missile defense and space control missions. It is also obvious that overcoming longstanding political obstacles is essential to establishing such programs. In particular, a public affairs program to educate U.S. citizens and their representatives regarding the essential role of space to our national security and economic interests is required. This
should emphasize that the proliferation of advanced technologies is providing potential adversaries, including rogue states and terrorists, with a capability to threaten our space systems (for example, via an EMP attack), and that the United States needs a focused program to assure the ongoing viability of those systems as well as the capability to reconstitute them. Since such a program will employ technology that is common to the space control and missile defense missions, both these efforts should be pursued in a coordinated fashion. Greater attention to the health and vitality of the space and missile industrial and technical base is also required.
What are the political arguments that currently impede un-fettered missile defense development and how should they be refuted? In addressing these questions, several observations need to be made.

To begin with, the nature of political opposition that has ranged against missile defense over the years has been unique. One is hard pressed to think of anything in the history of American defense development that – even remotely – has been more upset and turned on its head by the dominance of political considerations at the expense of technical considerations.¹

There have always been questions about what constitutes a “good” defense and how much we should pay for it and whether it is really necessary; questions continuously raised as part of our political tradition. But most always, technical reasons, rather than political reasons, have been at the base of such questions, which then in turn drive the political debate and decisions to deploy or not to deploy or to build or not to build.

In the case of providing an effective missile defense for the American population, it has been essentially the reverse: political considerations by and large have driven technical behavior that far too often has been designed to achieve certain predetermined political ends, in which the goal of developing the most technically sound and cost-effective missile defense is subordinated to other interests.

In military, defense, and space-related matters particularly, straight-line logic is essential to the efficient application of technology to their materiel. One does not design a portable bridge to carry tanks with political dictates as the guiding force; rather the straight-line logic of disciplined technology determines the bridge’s utility. Otherwise, the bridge is likely to fall down. So technical considerations come first to build a good bridge; political considerations come later, i.e., how to use the bridge but not how to make it.

¹ In this discussion, the term “technical” includes sound science and factors governing purpose, performance, cost-effectiveness, feasibility, and timelines.

This is probably one of the most widely understood concepts in American culture, which has led the world in applying technological innovation to the making of things: if it isn’t built right, it won’t work properly or it falls apart. Everyone who has built a fence, bought a car, flown in a jet, or followed a space shuttle flight understands this as part of a natural logic flow – often referred to as common sense.

Not so well understood is how politics can interdict the straight-line logic of technology to determine different ends in public policy making. The generally accepted rule of logic – and public expectations – is that political considerations in major settings should drive technology toward achieving better use of itself. However, there are times when political considerations drive technology away from achieving better use of itself which can lead to distorted outcomes, some Orwellian in nature. These opposing circumstances can be expressed in the following propositions:

There are two landmark examples that epitomize these propositions: one is the Lunar Landing Program; the other is Brilliant Pebbles (BP). While a generation separates their beginnings, the impetus for each came from the same source – the Cold War. President Kennedy launched one; President Reagan authorized the other. However, the political dynamics were quite different, as were the outcomes.

Proposition A – The Lunar Landing Program

The Lunar Landing Program began in May 1961 with Kennedy’s daring declaration before a joint session of Congress to land a man on the moon before the end of the decade. With the possible exception of the Manhattan Project, technology had never been so brutally challenged. The world’s first satellite, Sputnik, launched in 1957 and visible to nearly every backyard in America, had flashed a warning that awakened the nation to its vulnerabilities to the Soviet race into space and its nuclear ICBM development efforts.

By 1961 competition with the Union of Soviet Socialist Republics (USSR) had become vital to U.S. geopolitical interests.
In April, Soviet cosmonaut Yuri Gagarin pulled ahead as the first to orbit the Earth. In May, astronaut Alan Shepard followed with the first U.S. suborbital flight, which was wildly celebrated by the American public. Kennedy took heed and responded three weeks later with his challenge, a stunningly bold move to put the nation ahead in space via the moon.

Thus, the political dynamics were in place to drive technology toward a maximum outcome, i.e., taking a supportive role by letting technology determine the outcome. The now two-year-old National Aeronautics and Space Administration (NASA) took the charge with straight-line logic: how to get from here to there and back as efficiently and safely as possible.

To achieve this, the Mercury missions were given new challenges, with Gemini following to pioneer new achievements as the bridge to the Apollo moon program. Each phase contributed synergistically to the other components also being worked on, so that the sum of the whole (the lunar landing mission) at any given time was greater than its parts.

Spacecraft designs begat new spacecraft designs; guidance systems begat new guidance systems; living one day in space begat 14 days; and on and on into a myriad of thousands of components of human intellect and endeavor, and materiel designs and functions that were all pointed to one declared mission.

There were tragic deaths, other dangerous moments, and discouraging failures along the way. There were also hundreds of useful spin-offs that helped to give the United States its commanding lead in technology. But the mission point was never lost and scores of heroes abounded, as on July 20, 1969 – eight years after Kennedy’s challenge – the Eagle landed at Tranquility Base.

Of singular significance to this discussion is that throughout the Lunar Landing Program, each component and phase had its own place in the continuity and integrity of the overall mission. Remove one component and the entire mission would fail. Therefore, the program could not be arbitrarily cut in half or more in a Solomon-like gesture and still be expected to succeed. The significance is that the same applied to Brilliant Pebbles; it was cut and it died.2

Proposition B – Brilliant Pebbles

If one were to hand pen and paper to a couple of intelligent laypersons and ask them to outline the requirements for defense against an intercontinental ballistic missile, they likely would first determine the nature of the problem: to deal with a missile (ICBM) fired from somewhere perhaps 8,000-13,000 kilometers away that angles up into space (in about four to six minutes) then arcs through space (for maybe 5 to 20 minutes) then heads more or less straight down for another 60 seconds to hit the target (you) just like a bullet (which is why they call it “ballistic”).

The laypersons would certainly make a rough sketch of this action, showing an extended arc from launch to impact and noting the arc had three natural segments: missile rising over its own territory, missile in space probably over someone else’s territory, and missile descending over your territory. A helpful tutor would supply the eminently logical technical terms: boost, midcourse, and terminal. And then the questions would be put, how would you go about it? The lay reply likely would be to “shoot the thing down as far away from us as you can.”

That essentially was the straight-line logic which as early as 1960 persuaded the Department of Defense’s Advanced Research Projects Agency (DARPA) in its review of missile defense technologies, called Project Defender, to state: “A ballistic missile is more vulnerable in its propulsion or boost phase than any subsequent part of its trajectory... These circumstances immediately suggest an early intercept system as an ideal solution to the defense problem... So far, the only promising defense system concept has been a space-based or satellite borne interceptor... Such a system requires many thousands of interceptors in space... The economic feasibility of such systems is heavily dependent upon equipment reliability and upon enemy countermeasures.”3

Thus, nearly a year before Kennedy issued the lunar challenge, DARPA’s highly technical, multi-volume Project Defender Review laid out fundamental guideposts to point the way for the development of effective defense systems in which each must consist of three basic components: sensors to detect and track missiles and their warheads; weapons to intercept and destroy missiles and warheads; and battle management systems to integrate sensors and weapons into a coherent system. Project Defender favored hit-to-kill (HTK) interceptors or kinetic kill vehicles (KKV).

Since the kill vehicle can only hit what it sees, the higher the “eyes” (sensors) above the horizon the better – and the view from space gives an optimum perspective. Likewise for the kill vehicle; space basing provides the greatest flexibility (agility) for moving quickly in a 360-degree field to strike a missile with a good chance of destroying it in the boost

2 For a succinct but well-prepared historic overview of the lunar mission, see Andrew Chaikin, “Greatest Space Events of the 20th Century: The 60s,” Space and Science, December 27, 1999, http://www.space.com/news/spacehistory/greatest_space_events_1960s.html (as of November 12, 2008). This document is in appendix F.

By 1982, the political climate began to shift away from the comfortable notion that the nation was better off to defend itself by keeping itself naked and defenseless from missile attack — instead, relying on our offensive weapons to keep the Soviets in line. Except, things were not looking all that good. The high hopes of arms control with the Soviets were at best a mixed bag, particularly with the continuing buildup by the USSR of huge arsenals of ICBMs, most targeted on the United States. Other countries, China among them, were developing missile technology, so that the term “proliferation” had become part of the geostrategic vocabulary.

More and more policy makers and experts in geopolitics and strategic weapons were now expressing public concerns about America’s growing vulnerabilities. One among them was Lt. General Daniel O. Graham, USAF, who, following his retirement as long-time head of the Defense Intelligence Agency, produced some of the first authoritative “laymen-oriented” reports advocating missile defense, which sparked considerable public attention, including oftentimes heated denunciations by long-established idealistic arms control and peace groups, as well as pacifists from the scientific and religious communities. But at least missile defense was becoming a visible issue now out of the closet.

Another among them was Ronald Reagan, who as early as 1968 while governor of California, stated, “He [a governor] also has a role to play when national decisions affect his state... [and] surely has the duty to speak up... He might well participate in the discussion about an anti-missile defense system, or he might advocate a crash program aimed at advances in that field. The argument has been advanced, by ex-Secretary McNamara and others, that the stability of the world is enhanced if the two super-powers are able to hold one another’s civilian population as hostages, and that to protect our own population against nuclear attack, by means of shelters and by means of an anti-missile system, would actually have a de-stabilizing effect. It would...”

...
be difficult to think of an argument which bears more directly upon the welfare of the citizens of any state. A governor surely ought to express his views on the plausibility of such an argument.5

So even before the advent of the Nixon-Kissinger era of arms control that was to be based on MAD and the 1972 ABM Treaty, Reagan had serious questions concerning the protection of the population. In the years following until his election as president, he never lost interest. Through his radio broadcasts and newspaper columns that reached 20 million Americans each week (1975-79), he expressed strong reservations about how the inequities and vulnerabilities brought on by the Strategic Arms Limitation Talks (SALT) I and SALT II created an asymmetrical condition in the “balance of terror.”

Specifically, he pointed to the failure of the United States to count certain Soviet offensive strategic weapons a danger to the nation, while at the same time canceling some of our own (for example, Backfire vs. B-1 bombers), and he also contended that the Soviet Union did not believe in Mutual Assured Destruction. He further observed in 1979, “There once was the beginning of a defense; an anti ballistic missile system which we had invented and which the Soviets didn’t have. We bargained that away in exchange for nothing.”6

Reagan carried these decade-long concerns into office and in March 1983 made his stunningly bold announcement: he would launch an expanded research and development (R&D) program to determine if strategic (missile) defenses were feasible.

Dubbed “Star Wars” by long-time opponents of missile defense, a firestorm of controversy erupted in which the now-twenty-year-old arguments against defending the population in favor of MAD resurfaced. This time the ABM Treaty proved its effectiveness by muting those favoring missile defense (because of “treaty constraints”) but could not prevent proponents from proceeding with R&D to determine the feasibility of such defenses.

Feasibility rather than production or deployment thus became the operative word. While it imposed a number of unwanted headaches, still the Strategic Defense Initiative Organization (SDIO) was chartered in 1984 as part of the Department of Defense (DoD) to resolve the feasibility issue, with Lt. Gen. James A. Abrahamson, USAF, as its first director. The first step was to pull together R&D work already ongoing as part of the legacy of Project Defender, plus other space technologies and hardware that might prove useful in proof-of-concept exercises.7

The sequences of inquiry and application would thus demand looking at the feasibility of striking hostile missile launches in their boost phase through the development of space-based systems. While other elements involving theater and terminal (last resort) missile defenses already were being looked at by the Army (land-based) and the Navy (sea-based), these by their nature were limited in both range and scope; so that – even by 1983 with massive nuclear proliferation going on – there was no coherent, overarching global system being considered to which sea and land assets could be linked, so as to develop a robust, layered defense against any launch point in the world.

Conceptually, these linkages can be described in terms of a logic pyramid. The base of the pyramid is comprised of space-based systems, because they are global and, thus, can do the most; they can see farther and strike farther. Sea-based systems are next best, because they are flexible for surface deployment (theoretically over two-thirds of the Earth) and, therefore, superb for sophisticated regional operations. Finally, at top of the pyramid – supported by space- and sea-based capabilities to maximize their effectiveness – are the fixed and vectored land-based terminal defenses systems.

Each component (space, sea, land) is important in its own way, but without space at the base, the other systems are limited in what they can do. In this pyramid, there is no “best” any more than an aircraft carrier is “best” over a cruiser, which is “better” than a destroyer. All are equally important, but only in terms of their particular functions. When they act together, they can provide a formidable defense. When they are forced to act alone, they can be overwhelmed. Space allows them to act together.

In 1983, the critical base of the pyramid was missing and SDIO was tasked to find ways to provide it. Over the next three years, a spate of technical and strategic studies produced an architectural concept that included, as its centerpiece, space-based interceptors (SBIs) held in an orbital

7 It should be remembered that at all times during the life of the ABM Treaty, both the United States and the Soviet Union had the right to withdraw unilaterally without cause on six months’ notice, a very simple procedure under Article 15. With nuclear proliferation growing even then at very alarming rates, it was becoming increasingly clear to a growing number of policy makers and opinion leaders that the U.S. policy not to defend its population as a means to slow the arms race was not working; indeed, it was likely creating incentives for some nations to accelerate their nuclear development efforts. The Strategic Defense Initiative was to be an insurance policy, so that the United States would have a running start to move quickly to defend its people should circumstances dictate treaty withdrawal.
constellation that would be able to destroy Soviet ICBMs in their boost phase, thus destroying all the warheads and decoys before they could be deployed in space.

Further refinements by 1987 brought the Strategic Defense System Phase I Architecture, in which the space-based interceptor remained the centerpiece of six components comprised of both space-based and land-based surveillance and tracking systems, a battle management/command and control and communications system, and a land-based interceptor system for terminal or last-resort defense. Thus, with the exception of sea-based assets not yet conceptualized, both the base and top of the logic pyramid were to be combined synergistically as integral parts, so as to form a multi-tiered defense that could attack Soviet missiles and warheads throughout their flight.

However, two principal problems needed resolution: vulnerability and costs. The Phase I Architecture design, with its several space-based components, would present a large vulnerability profile, inviting attack by anti-satellite systems (ASATs) that the USSR might develop. And the interceptors would be quite expensive and also highly vulnerable, because they would be berthed together in multiples, battle ready, in large satellite “garages” parked in space like “sitting ducks.”

According to Donald R. Baucom, historian at the Missile Defense Agency (MDA), “The solution to these difficulties emerged from the work of Dr. Lowell Wood, a physicist from Lawrence Livermore National Laboratory... [who] concluded that small, autonomous interceptors might offer a solution to the vulnerability and cost problems associated with a space-based interceptor system... and concluded the autonomous interceptors could be produced using technology that could be bought off-the-shelf”... A few months later (in 1988), Wood introduced the public to the new interceptor concept and coined its name... a miniaturization process that would lead to the emergence of Brilliant Pebbles from existing “smart rocks” like the Army’s Homing Overlay System vehicles and SDIO’s Delta 180 test vehicles.”

What made the concept of Brilliant Pebbles so convincingly feasible as a workable SBI was that each Pebble would be completely autonomous, small, agile, and positioned in orbit 290 kilometers above the Earth and hundreds of kilometers apart from neighboring Pebbles, thus hard to hit. Each would be about the size of a traditional South Carolina watermelon and weigh between 1.4 and 2.3 kilograms. Each would be housed in a modest-sized protective cylinder, or “life jacket,” providing solar power, communications, surveillance, thermal and altitude controls, navigation and

8 Donald R. Baucom, “The Rise and Fall of Brilliant Pebbles,” Journal of Social, Political and Economic Studies 29, no. 2 (Summer 2004): 146–49. Also, the reference to “smart rocks” is significant in explaining that there was nothing really exotic or mysterious or technically impossible about Brilliant Pebbles, which missile defense opponents kept suggesting, because the military already was far along in developing bombs and cruise missiles that, through sophisticated electronics, could unerringly find and hit targets. By the time of Desert Storm in 1991, “smart rocks” had become a popular culture term. Brilliant Pebbles was simply another application of proved technology. See appendix D for the full text of this well-documented history that merits close attention.
survivability (in all about 102 centimeters long with a total weight of about 45 kilograms) until such time as a missile attack. Then the Pebble (watermelon) would be armed for combat and shed its covering to go after the attacking missile for a kinetic kill. The Pebbles could be so deployed in a powered-up mode for 10 to 20 years. Costs would be relatively low because of the use of off-the-shelf commercial technology and mass production techniques.

The concept originally called for as many as 100,000 jacketed Pebbles – each spaced between 400 and 800 kilometers apart – in a Northern/Southern Hemisphere constellation designed to defend against an Armageddon-like Soviet missile attack of thousands of warheads. Wood estimated 7,000 would be more reasonable and continued to refine the Brilliant Pebbles concept. SDIO also was looking at other space and related land-based systems and applications, so that the spate of technical and strategic studies continued – one exercise or project review folding into another and another. By 1988, unclassified elements had reached public discussion, sparking continuing controversy by missile defense detractors. The world was watching with mixed emotions, except the Soviet Union which was not mixed at all.

Then the Berlin Wall came down and with the demise of the Soviet Union a new post-Cold War era was dawning. Armageddon-like strikes were no longer seriously relevant. But limited strikes from accidental or unauthorized launches within the former Soviet Union (FSU) were of real concern, given the turmoil of command/control security measures. Also of growing concern was the proliferation of ballistic missile technology involving nations beyond the FSU with the potential of entering world-power nuclear geopolitics (China, India, Pakistan) with offensive nuclear missile arsenals and encompassing disquieting developments within rogue states (North Korea, Libya, Iran), all of which presented new defense, security, and foreign policy considerations involving either political blackmail or an out-and-out limited strike from somewhere against the American people.

Thus, the focus altered to consider how to defend against limited strikes from anywhere in the world. Brilliant Pebbles remained the centerpiece to a multi-layered system. President George H. W. Bush endorsed the idea9 and Ambassador Henry F. Cooper gave the new concept its “legs” in his SDI Independent Review, March 15, 1990.

“[The] Cooper report,” according to Baucom, “laid out a new vision for missile defenses in the post-Cold War era... to focus on providing protection against limited missile strikes (PALS)... with three main components... a space-based sys-

In July 1990, Cooper became SDIO director and pursued the concept which ultimately would involve only 1,000 Brilliant Pebbles as the centerpiece to the overall architecture, with each of the jacketed “watermelons” stationed between 800 and 1,600 kilometers apart in orbit with the ability to defend against an unauthorized or accidental launch of up to 200 warheads, the number carried by the arsenal of MIRVed missiles under the control of one FSU submarine. The constellation of Pebbles would also defend against limited strikes of single-warhead-tipped missiles fired from rogue states, as well as deter such states from nuclear blackmail or discourage them from investing huge sums to get into the ballistic missile game in the first place.

Shaped into a new Strategic Defense Initiative (SDI) program now known as GPALS for Global Protection Against Limited Strikes, the controversy surrounding it intensified, particularly in Congress, where SDI budget cuts were directed most especially to slow or stop work on the space-based elements. Then came the Gulf War and Desert Storm and the Scuds and the Patriot anti-missile missiles. Suddenly, millions of Americans and others worldwide understood the meaning of “missile defense.”

Not unlike Kennedy, who seized on Sputnik to announce the Lunar Landing Program, Bush also assessed the Amer-

9 President George H. W. Bush, remarks to national employees of Lawrence Livermore Laboratory, San Francisco, California, February 7, 1990.

can mood and in his State of the Union Address on January 29, 1991, announced, "I have directed that the SDI program (GPALS architecture) be refocused on providing protection from limited ballistic missile strikes – whatever their source. Let us pursue an SDI program that can deal with any future threat to the United States, to our forces overseas, and to our friends and allies."

The GPALS architecture was now formally refined to include four major components: Brilliant Pebbles that could protect any place globally against attack; a land-based national missile defense system; a land- and sea-based system to defend deployed U.S. forces and populations of allies; and a battle management/command and control system to integrate the other three components – so that the Pebbles not only would function autonomously to go after boost-phase and early-midcourse targets but also would provide early warning and trajectory data to land and sea elements for close-in (late-midcourse and terminal) defenses.

Thirty years after Project Defender, the logic pyramid had been set definitively in place, where technology – once it was allowed to flow unfettered like water – sought its natural place with the same clarity of purpose as the Lunar Landing Program: to be truly effective, each component was integral to the other, so that in both cases, the whole was greater than the sum of its parts.

But within three years, the logic pyramid would be turned precisely upside down on its tip, with space-based eradicated, sea-based shoved aside, and land-based restricted to one terminal defense system (metaphorically and in actual fact not a very stable base) – this as the only means to be granted by government to defend the nation against missile attacks.

The conditions that brought this about were political, not technical, the epicenter of which was Congress, pitted against SDIO and the Bush administration. On the surface, it might appear that this was the continuation of some long-standing tradition Democratic-Republican partisan fight. Superficially, perhaps, but only for tactical convenience.

The real flashpoint centered around whether or not the American people were still to be held hostage to potential strikes as the means to achieve “global stability” à la the ABM Treaty (the traditional mantra of the pro-Mutual Assured Destruction advocates) vs. the increasingly assertive argument that the post-Cold War aftermath and growing nuclear proliferation demanded effectively layered, technologically serious missile defenses soon.11

Indeed it was the end of the Cold War that seemed to energize Congress, led by a small but powerful group of pro-MAD advocates, to become increasingly vocal and hard-line against SDIO programs, especially Brilliant Pebbles. At a time when the Soviet Union had become extinct (which raised serious questions about the legality and standing of the ABM Treaty) and the doctrine of “massive retaliation” now a relic of the past, one might have expected more harmonious relationships, given that the danger and source of contention had been considerably altered.

Even the Bush administration and SDIO had recognized this and accordingly greatly scaled back their proposed missile defense systems away from protecting against “massive strikes” (100,000 Brilliant Pebbles) to offering GPALS – protection against limited strikes (1,000 Brilliant Pebbles). Even the newly emerging Russian Federation in 1991 had expressed interest in mutual missile defenses through a series of working group meetings with the United States in part aimed at alleviating the ABM Treaty constraints for both nations, which was to culminate in Boris Yeltsin’s proposal in January 1992 to build a joint global defense, replacing Mutual Assured Destruction with Mutual Assured Survival (MAS).12

But Congress, acting as an institution and as the dominant enabling body of the federal system, actually increased its hostility. However, it did so with circumspection. Faced with growing public support for serious missile defense efforts on the one hand and, on the other, the increasing internal pressure of the pro-MAD advocates (supported by their outside special interests), Congress “split the baby” when it enacted the Missile Defense Act of November 1991.

It was an artfully drawn compromise document. First, it advocated setting specific deployment goals for both theater and national missile defense, including Section 232 implying an expectation that the ABM Treaty would be altered, and Section 234(a) which called for “robust funding for research and development for promising follow-on anti-ballistic missile technologies, including Brilliant Pebbles.” This was widely heralded by missile defense advocates.

spending on space-based interceptors. But when the Berlin Wall came down, the intensity of the pro-MAD efforts increased almost exponentially, roughly at the beginning of 1991 through most of 1993 when it became clear that GPALS was essentially dead.

12 Of the three “separate but equal” branches of government, Congress is “more equal” than the executive or judicial, because it has the “power of the purse” (appropriations) and can impeach, which the others cannot do. Thus, Congress makes or breaks the executive in most policy and program undertakings.

Missile Defense, the Space Relationship, and the Twenty-First Century

The Politics Against Missile Defense: Historical Analysis
Then the act turned around to include uncompromising language requiring missile defense deployments to comply with the now-20-year-old ABM Treaty – which in its totality allowed the United States only one single land-based ABM system comprised of no more than 100 interceptors at Grand Forks, North Dakota, to protect its own offensive nuclear missiles but not the American population. Further, in another section, “Exclusion from Initial Plan,” the act specifically barred Brilliant Pebbles from the initial plans for a limited national defense. The pro-MAD advocates were comfortable with these restrictions, which gave them what they needed.

Not surprisingly, the ambivalence of the law provided incentives for both sides to dig in by allowing each to justify its positions with righteous intensity, which paradoxically they could both do and be “correct.” Collision was foreordained: missile defense proponents pushing for an all-out effort to protect the American population from global strikes and the pro-MAD and arms control advocates vowing to protect the ABM Treaty, now in serious jeopardy with the demise of the Soviet Union.

The demise of the Soviet Union posed a very real problem for the pro-MAD advocates, because if the ABM Treaty was scrapped or found to have no legal standing, then there also would be no legal standing or provisions to enforce the doctrine of Mutual Assured Destruction, which for 20 years had been operationally secured within the ABM Treaty. With the treaty gone, the whole subject of MAD likely would have to be debated again as a public and defense policy matter, in order to have it reincorporated into a new treaty of some sort, but a treaty that would be designed (as was the ABM Treaty) to house the MAD doctrine for future enforcement – not an easy subject to discuss before the American people, who were growing increasingly suspicious about their continuing role as nuclear hostages. Hence, the forceful determination to keep the ABM Treaty in full effect.

ărth 59

Missile Defense, the Space Relationship, and the Twenty-First Century

The Politics Against Missile Defense: Historical Analysis
The battleground was the hearing rooms of Congress beginning in the spring of 1992, particularly those of the Senate Armed Services Committee. In sum, SDIO was pursuing what it considered to be an evenhanded course to develop the single land-based system but in concert with continuing “acquisition-ready,” next-phase work on space- and sea-based elements of GPALS, particularly Brilliant Pebbles. The pro-MAD Senate leadership had a different take, essentially that the land-based system should be given highest priority and developed independently without regard to GPALS or any thought of integration; indeed, the space aspects (such as Brilliant Pebbles) were to be subordinated once again as a continuing, long-range research program as it had been for over 20 years.

The clincher was the date Congress had picked to deploy an ABM Treaty-compliant anti-ballistic missile (land) system at a single site... which was to be no later than 1996. Pro-MAD advocates accused SDIO of foot-dragging by diverting funds to “excessive spending” on space-based elements. SDIO countered with evidence that it was operating within its budget authorizations and that Congress had failed to provide sufficient funds for the land system and also asserted the 1996 deadline “had never really been possible.”

While SDIO moved to accommodate Congress by delaying Brilliant Pebbles development for 30 months, Congress had other ideas. It would remove the ambivalence. As Baucom states in quoting remarks by the then-chairman of the Senate Armed Services Committee, Sam Nunn, to the SDIO director, Henry F. Cooper:

“It is clear Mr. Ambassador, just by the numbers, it’s absolutely clear, that your priority is not — maybe it’s the right priority but it’s not the priority of Congress — your priority is not to meet an early deployment date on an ABM Treaty-compliant [land] system. The fact that SDIO was in the process of spending $2.6 billion on the BP program made it was clear [sic] that Cooper’s priority was “still Brilliant Pebbles.” Therefore, Nunn continued, “it is very clear” that Congress will have to make “a more definitive statement” of its goals for the SDI program in this year’s 1992 authorization law.”

True to these words, Congress did just that. Approved just days before the 1992 presidential election, the National Defense Authorization Act for Fiscal Year (FY) 1993 removed most of the ambivalences by (1) clearly stipulating that the missile defense goal must be ABM-Treaty compliant by not developing or testing or deploying any system or component considered in Treaty violation; (2) further reducing funding (never very high) for all SBI elements; (3) deleting the 1996 deployment deadline for the land-based site; and (4) directing SDIO to focus on near-term deployment (single land-based system) and to divest itself of projects involving what Congress considered to be “far-term technology,” such as Brilliant Pebbles and nearly everything concerned with space- and sea-based systems.66

As a result, SDIO in December 1992 transferred Brilliant Pebbles to the Air Force as a now-downgraded “advanced technology demonstration” program. Under the new Clinton administration, DoD in February 1993 first further reduced Brilliant Pebbles to a technology-based program and then cancelled it entirely.

On December 1, 1993, the Ballistic Missile Defense Organization (BMDO) — formerly SDIO — issued a stop-work order ending the program. The logic pyramid now officially was turned precisely upside down on its tip, confirming the validity of Proposition B.

The Consequences

“What did we get for our $30 billion?” It was the question asked regularly by critics and advocates alike, particularly during the final days of SDIO and Brilliant Pebbles, and the most definitive answer came from an unlikely source — Clementine.15

In major technological undertakings, concepts comprise the beginning point, where ideas are shaped by the slide rule, technical tables, formulas, research results, and the behavior of relevant applications in other uses – all of which are bundled into software and screened on the computer (today’s “drawing board”). To see if concepts work, they are first put into computer designs and if that looks good, into computer simulations and if that looks good, into three-dimension models (mock-ups) and if that looks good, into proof-of-concept applications (components of models actually built and per-

16 Ibid., 181-83.
17 James A. Abrahamson and Henry F. Cooper, two of the three SDI directors from the Reagan and Bush-41 administrations (George C. Monahan, SDIO’s second director, was deceased) answered this question in “What Did We Get for Our $30-Billion Investment in SDI/BMD?” Report of the International Study Group on Proliferation and Missile Defense, National Institute of Public Policy, September 1993. Their answer, provided before the extraordinary success of Clementine described below, was that much of the $30 billion would have been spent on the same technology under existing DARPA and service programs had there been no SDI, but without a focused objective as President Reagan’s SDI provided. The existence of that focused program provided technical, management, and geopolitical dividends — not the least of which was the early demise of the Soviet Union, which led to a substantial reduction in defense spending several times the $30-billion invested in SDI. Subsequently, Clementine was a clear demonstration of the technical and management innovations produced by the SDI program.
formance tested separately) and if that looks good, into prototypes, real-life working models – to be bent, twisted, shot at, swallowed, driven, flown or otherwise performance tested. Only then can the best determination be made about getting “your money’s worth” and even then, use “in the field” or the marketplace is the final determinant.

Broadly speaking, the development of the Brilliant Pebbles architecture had successfully achieved the simulation stage and by 1991 was ready to move into the proof-of-concept, prototype, and performance-testing stages, which was Congress’ dilemma when it enacted its compromise Missile Defense Act of 1991. It also is what sparked the Senate’s heated opposition in 1992 to further work on Brilliant Pebbles and other SDI space-related projects.

Indeed, the Senate tasked the GAO to review SDIO’s analysis of Brilliant Pebbles. By this time, SDIO had either conducted, itself, or cooperated with other government agencies and review boards to conduct examinations of every facet in the evolution of Pebbles and other supporting (or competing) components. In all, eleven major reviews and studies had taken place over a three-year period, not counting dozens of ancillary studies, and the bottom line was that no technical reasons had yet been found that would rule against Brilliant Pebbles proceeding to the next levels of development.

The GAO’s own report appeared to have found no particular dispute with SDIO, except to point out that while computer simulations offered the only method of analysis available at such an early stage, they should not be confused with reality – a self-evident observation or “given” that applies to most any product or system under development. SDIO responded in an appendix to the report that its simulations were well within the bounds of sound engineering practice and cited authoritative references – the point being that the next steps logically involved refining these simulated performance assumptions by the only means available: through proof-of-concept and prototype work – which is exactly what SDIO was hoping Congress would support.

Congress responded in October 1992 by defunding Brilliant Pebbles, so that there was to be no further development work, no proof-of-concept, no anything.

Except.

During this period, SDIO had realized that its space-based programs likely would never be proved out. Unless. Was there a way to move to proof-of-concept and prototype levels without offending Congress? Some way to demonstrate or perhaps even to build and fly the many lightweight components that had been developed for space-based interceptors and surveillance systems? Maybe some low-cost space mission outside the defense field and away from ABM Treaty constraints?

There was. For some 16 months, NASA had been exploring with SDIO possibilities of using DoD technologies in its space exploration program. So that early in 1992, SDIO formulated the concept for a space probe mission based on Brilliant Pebbles technologies. In addition to NASA, the Naval Research Laboratory provided the spacecraft and overall system integration, and Lawrence Livermore National Laboratory provided the sensors, propulsion, computers, and the like, using hardware gathered up from Brilliant Pebbles demonstration programs that it was handling.

The mission: return to the moon, map its surface, fly by the Earth and slingshot past a near-Earth asteroid (Geography) on a planned near-miss and continue out into deep space. Hence the space probe’s name, Clementine (“lost and gone forever,” per the old ballad). Authorized in the waning days of the Bush-41 administration, preparations were allowed to continue under the new Clinton administration, so that the Clementine mission was launched aboard a Titan II rocket on January 25, 1994, and was completed in August.

What, then, was the mission performance outcome? While it was unable to complete the asteroid flyby, Clementine was “spectacularly successful” in the lunar portion
of its mission, completing about 350 lunar orbits in two months and taking almost 1.8 million multi-spectral images of the moon (using 15 spectral bands). *Clementine* was the first high-fidelity photometric survey of an extraterrestrial body and its data indicated the existence of water at the lunar poles. It delivered more data and more information than the entire *Apollo* program, with a total mission program cost of $80 million. The small mission team won awards from NASA and the National Academy of Sciences, and results of the surveys and mission were widely (and favorably) reported. A replica of *Clementine* now hangs in a place of honor in the Smithsonian.

In terms of the mission performance of *Brilliant Pebbles* technologies, everything worked. As Baucom records: *Clementine served as a highly successful test bed for twenty-three lightweight SDI technologies, all of which performed properly. A number of these technologies were directly related to the Brilliant Pebbles program. Specifically, Clementine’s cameras and sensors had been developed for BP. Clementine also verified the autonomous operational mode that was to have been employed with Brilliant Pebbles... [and] lent support to the philosophy that had initially guided the Brilliant Pebbles development and acquisition process – the maximum use of commercial off-the-shelf components and a minimum reliance on hardware designed to military specifications.*

Thus, the by-product of the *Clementine* mission was to space-qualify all of the first generation of *Brilliant Pebbles* technologies, except for the miniature propulsion elements for the space interceptor, which were subsequently tested with “very efficient” results in the *Astrid* launch experiment in February 1994, thus completing the qualification requirements.

Clementine notwithstanding, the stop-work order issued approximately five months earlier on *Brilliant Pebbles* and other space-related projects continued the dismantling process without interruption. Little, if any, of the SBI technologies survived – not even for use in the land-based system which SDIO had been working on per instructions from Congress. It was to have been an agile, fast, and lightweight land-based interceptor to harmonize with other GPALS components for a layered defense and thus drew heavily on these technologies (most of which *Clementine* had proved);

20 What was occurring was that, with the change of administrations and sanctioned by Congress, there was an immediate move to redirect missile defense efforts away from anything that even in theory would be potentially useful – then or in the future – in the development of any system or even a component that might threaten the integrity of the most narrow and strict interpretation of the ABM Treaty (the Russian Federation notwithstanding). So that it was not just a case of canceling programs but became a matter of destroying or disbursing the knowledge base, or “dumbing down,” which reveals a very high degree of political dedication to this particular cause and issue.

The new Ballistic Missile Defense Organization, for example, directed the destruction of the entire SBI technology-base and threw away all of its own SDIO-era records. Even the SDIO’s *Raptor-Talon* program was cancelled early in the Clinton administration – a high-altitude unmanned aircraft which was to bring *Brilliant Pebbles* capability down into the atmosphere for near-term boost-phase defense against short-range missiles that could be fired, for instance, from the decks of freighters close in to U.S. shores. Also, development work for a sea-based ballistic missile defense (BMD) system was “dumbed down” by restricting its tracking/targeting radar to a single site, which could not see beyond the horizon – this when the Navy’s aircraft and cruise missile defenses already were developing widely spread networks of radars and other linked sensors to provide “far vision” and reach for those interceptors, but forbidden for ballistic missile defenses.

21 On the Russian Federation front, the Ross-Mamedov talks that followed Yeltsin’s January 1992 proposal for a joint global defense using SDI and Russian technologies were discontinued. As Dr. Gregory H. Canavan, senior fellow and science advisor at Los Alamos National Laboratory, states in a study:

The Politics Against Missile Defense: Historical Analysis
in April 1993, apparently no one in the U.S. delegation was familiar with the concept. The Russian factions who had supported the initiative for cooperation were undercut; they lost ground with their colleagues who had consistently opposed defenses – or at least U.S. defenses. The opportunity for joint defenses was lost in first [sic] two years of the Clinton Administration while it concentrated on the domestic economy.23

The final notable casualty was Clementine II. The first Clementine mission, as noted, was highly successful, so that a follow-on mission was planned immediately thereafter. It was to be a deep-space asteroid visit to finish the original mission, using even more advanced technology than before. Midway through mission preparations, President Clinton exercised his line-item veto in September 1997 to cancel Clementine II because, as the senior White House spokesman told the press at the time, of its SDI heritage and its potential to enable a space-based defense.24

In all, it was a remarkable political achievement: a $30-billion investment in a technologically feasible and verifiably needed national defense project stopped dead in its tracks; stopped with an effort powerful enough not only to prevent even the salvaging of some truly innovative technologies for use in other applications (such as a second Clementine) but with a deep enough reach to expunge much of the knowledge base and scatter the residual technological fragments and components to widely dispersed areas – with the added effect of dismembering the critical mass of engineers and scientists who had been embedded in the knowledge base and who were now seeking other pastures, since ballistic missile defense no longer was a terribly attractive career path.

Thus, in this instance, the technological clock had been turned back a full decade by political fiat which decreed that the knowledge gained was to be forgotten or not to be used in matters concerning space-based defenses and their spin-offs, a behavioral pattern usually practiced in the more closed societies.

While the outcome was satisfying to missile defense opponents, it was nevertheless for them a close call. Had the political balance been less weighted in their favor, things arguably might have gone the other way. Because, by the early 1990s, various components of GPALS were in the major defense acquisition program with deployment cycles forecast to include (i) Brilliant Pebbles, with an initial operational capacity in 1996 and with full operational capacity (deployed in constellations) in 1998; a deployed sea-based system (small but fully functional) in 1996; the land-based system GBI-X KV, referred to earlier, operational by 2000 – which was the year targeted to begin the integration and deployment of the entire GPALS system.25

But there still remained the problem of dealing with growing public concern and rising expectations about missile defense. Evidence of increasing proliferation in other countries, including China, along with nagging questions about the capability of the new Russian Federation to guard against rogue or accidental launches among its deteriorating nuclear forces had found increasing currency in the national media. It was an issue that still would not go away. The problem was to accommodate these expectations by “showing progress,” but rigidly and starkly within the confines of the ABM Treaty, so as not to send any ambivalent signals to the international community.

Accordingly, the Clinton administration – right about the time when the second Clementine mission was being cancelled – announced a new program in 1997 for another land-based system to replace the previously cancelled GBI-X KV. It was known as the “3 + 3 plan,” to involve three years of R&D, three years of “acquisition,” followed by deployment either during or following 2004, not in North Dakota but in Alaska. It was not to use any of the faster, lightweight technologies developed in the 1980s. Rather, the designs were to use other technologies in an architecture unequivocally well within the bounds of “treaty constraints,” that would produce a slower, heavier, and bigger interceptor, so as “to offend no ballistic-missile owner.”26

24 Theresa Hitchens, president of the Center for Defense Information, recently reaffirmed that the Clinton administration canceled the follow-on Clementine effort because it was intended to experiment with space-based weapon technology to defend against enemy missiles. See Boston Globe, “Space Weapons Seen as Possibility,” May 19, 2005, http://www.boston.com/news/nation/washington/articles/2005/05/19/space_weapons_seen_as_possibility/ (as of November 12, 2008).

25 Wood and Cooper, presentation at IFPA conference “Defending the Northeast, the Nation, and America’s Allies,” Valley Forge, June 28-29, 2001.

26 Initially, the site for the “treaty-compliant” land-based system (essentially a terminal phase, “last resort” defense with no space-based “eyes” to help) was to be in North Dakota; however, in 2001, it was moved to Fort Greely and Kodiak, Alaska, where it is still under construction. Original cost was $5 billion (1997). The program was continued by the George W. Bush administration with essentially the same basic architecture and performance characteristics, which by 2001 had reached a cost of $46 billion “and climbing” with deployment moved to 2010. See Wood, presentation at IFPA conference “Defending the Northeast, the Nation, and America’s Allies,” Valley...
However, two unintended consequences took the edge off the effort to balance “treaty compliance” with public expectations: the 1995 National Intelligence Estimate (NIE) and in 1996 the People’s Republic of China (PRC). The NIE, the official threat assessment body of the United States, which declared there would be no immediate missile threat to the United States for 15 years, had neglected to consider Alaska and Hawaii in the threat analysis. The PRC, in the heat of the 1996 elections in Taiwan, had made a nuclear threat against Los Angeles, should the United States choose to interfere.

Not surprisingly, opinion leaders in Alaska, Hawaii, California, and other western states were not particularly uplifted by these events and along with various state legislators began making inquiries concerning the federal government’s intentions about its plans to defend its citizens.

In 1998, the State Legislature of Alaska by resolution petitioned the federal government to fulfill its constitutional obligation to provide for the common defense – believed to be the first resolution of its kind ever directed by a state to the government of the United States. (See appendix A.) The Alaska resolution is credited with contributing to the formation in 1998 of the bipartisan Commission to Assess the Ballistic Missile Threat to the United States (the Rumsfeld Space Commission).

The commission’s report was a sobering one and doubtlessly, along with other factors, helped to encourage a different Congress now to enact – by an overwhelming bipartisan majority in both chambers – the National Missile Defense Act of 1999, which was signed by President Clinton in July 1999. The law stated that “It is the policy of the United States to deploy as soon as is technologically possible an effective National Missile Defense system capable of defending the territory of the United States against limited ballistic missile attack (whether accidental, unauthorized or deliberate).”

GPALS was back. Or was it?

With the 2000 elections approaching, there was no discernible movement within DoD to alter the pace and direction of the treaty-compliant land-based program, a status that carried over into the new administration of President George W. Bush. While Bush in both his campaign and early presidential speeches was an unequivocal advocate of effective, layered missile defenses,27 little of program substance changed (except the organization name to Missile Defense Agency); this as the new administration settled in to deal with a politically fractured Congress – a strong incentive to minimize partisan conflicts and controversial issues, which by its nature included missile defense.

Then came September 11, 2001, and all that that event implied, and on December 13, the Bush administration declared the U.S. intention to withdraw from the ABM Treaty six-months hence (June 13, 2002). His declaration stated in part:

As the events of September the 11th made all too clear, the greatest threats to both our countries [Russia and the United States] come not from each other... but from terrorists who strike without warning... The United States and Russia have developed a new, much more hopeful and constructive relationship... The grim theory was that neither side would launch a nuclear attack because it knew the other would respond, thereby destroying both... We’re moving to replace mutual assured destruction with mutual cooperation.28

The effect of this action was as dramatic as it was important in its implications. Consider the drama: Secretary McNamara was one of the principal architects of the doctrine to hold populations hostage to foreign powers through Mutual Assured Destruction; President Nixon started the process (MAD) with the creation of the ABM Treaty; Presidents Ford and Carter supported the treaty and the doctrine; Presidents Reagan and George H. W. Bush “pushed the envelope” to stretch the treaty “allowables” to the maximum, looking to amendments or withdrawal; President Clinton said “no way” and adopted the Nixonian intent; and President George W. Bush said “enough” and stopped the process. Elapsed time: 30 years and 15 Congresses DoDging in and out of the presidential shadows, with the relevant bureaucracies moving throughout at their own stately paces and unflappable in the pursuit of their own interests.29

threats... We also recognize the substantial advantages of intercepting missiles early in their flight, especially in the boost phase... We have more work to do to determine the final form the defenses might take... When ready, and working with Congress, we will deploy missile defenses to strengthen global security and stability.” See “Remarks by the President to Students and Faculty at National Defense University,” White House press release, May 1, 2001, http://www.whitehouse.gov/news/releases/2001/05/20010501-10.html (as of November 12, 2008).

27 “The Secretary [Rumsfeld] has identified near-term options that could allow us to deploy an initial capability against limited

Dr. James M. Buchanan, 1986 Nobel laureate (economics for “public choice theory”) states, “Recent developments in public choice theory have demonstrated the limits of legislative control over the discre-
Each administration and each Congress has had its reasons, its pros and cons to fit both the temper and circumstances of its time. But the bottom line was that for whatever reasons – righteously justified or not – the nation’s missile defenses had been hobbled by a treaty which by 2000 already was an old relic of the Cold War and George W. Bush ended it.

It was important because (1) it cleared the way for technology to be used logically and efficiently unconstrained by law, and (2) those who, for whatever reasons, were still against a global, multilayered defense could no longer cite “the treaty” in stentorian pronouncements, rather they would have to bring forth other reasons why the population should not be defended, which is where we are today.

As significant as the treaty withdrawal was, it is still just a point of departure for work yet to be done – not an end point without further resolution. While there has been movement toward scheduled deployment (although delayed from its 2004 target date) of the Alaska land-based system, with another one in California and planned in Central Europe, and while there has been discussion of the importance of boost-phase interceptors (a post-treaty breakthrough), but with focus confined to land and/or sea systems, as well as airborne lasers, there has been little if any encouraging public discussion concerning the development and deployment of SBIs.

Thus, the order of priority still appears to remain little changed from what it has been since 1993 (land, limited sea). One change, though, has been the addition of the “newly emerging” concept of “surface-based” interceptors (land or sea) that theoretically can be deployed quickly (via ground, air cargo, or ship) for positioning and able to fly fast enough up from the ground, through space and back down to kill a hostile missile in its boost phase located in some as-yet-to-be-defined parts of the world. But SBIs are not part of this idea and this particular non-space boost-phase kill vehicle appears at least eight years away from the proof-of-concept stage (a stage which Brilliant Pebbles achieved in four years). This creates a paradox in that current policies now seem to recognize the imperative of building boost- and midcourse-phase interceptors on the one hand but – on the other hand – preclude the logical development of the means to do so.

In sum – at least in the near term – the logic pyramid, in terms of practical application, remains upside down on its tip. Two land-based systems (Alaska and California) serve as the base for missile defense capability and have received most of the funding, followed by sea-based missile defense which shows greater promise of success, but with little or no emphasis on space-based missile defense. Without space, the whole logical concept of effective global, layered, and economically efficient missile defenses still remains essentially reversed and upside down in what could well be very complex and excessively costly undertakings.

31 See J. Lynn Lunsford, “Pentagon Awards Antimissile Pact to Northrop Team,” Wall Street Journal, December 4, 2003, A12. “Northrop Co. Grumman and Raytheon Corp. won a Pentagon contract, valued at as much as $4.5 billion over the next eight years, to develop a rocket capable of intercepting and destroying a hostile ballistic missile within five minutes of its launch... The eight-year contract covers development and testing of the first 10 interceptors, which would be grouped in pairs and transported by tractor trucks...” Note: there are striking similarities that suggest this program may be an effort to recreate 40-year-old Sprint interceptors, developed in the 1960s as part of the Safeguard system. Over the past 18 months, this Kinetic Energy Interceptor (KEI) program has been sharply curtailed by the administration and Congress seems poised to cut it even further. For example, see Aerospace Daily & Defense Report, “HASC Endorses ABL Revamp, Seeks, Comparison with KEI,” May 19, 2005.

32 Reversed and upside down: Rather than returning to the technological logic that was presented in Project Defender in 1960 and proved out by 1994, the trend still continues to focus major attention on land or sea systems by following more convoluted paths of R&D with greatly extended timelines. The current guiding concept of U.S. missile defense doctrine (if there is one) appears to be the reverse of the GPALS concept which uses spaced-based interceptors as the unifying element, that is, instead of starting “large” in space and simultaneously “filling in” with land and sea components (GPALS), the post-ABM-Treaty concept appears to be continuing the idea of starting “small” on land, and later sea, and then “backing into” the development of evermore far-reaching capabilities. The quest seems to be an attempt to develop adequate means to strike a hostile missile in its boost or early-midcourse phase but pointedly without the use of space-based interceptors. This approach arguably increases both costs and technical and logistical problems significantly over GPALS projections. The principal problems in going after boost-phase kills are time, speed, and location, ones common to all phases but in this case considerably more acute. Because the boost phase lasts only while the rocket is firing, which, depending on its range (short or ICBM), could be anywhere from one to five minutes, and the interceptor must be close enough to get to the rocket while it is still burning, so that its basing location and speed are critical to success. Under certain conditions, technically able land-based systems might be used if they could be positioned closely enough to

By the end of 2008, there were 24 ground-based interceptors emplaced in Alaska and California, with an additional 10 envisioned in Poland. See also section 6 for international dimensions of this issue.
The MDA’s 2008 budget authorized by Congress continues to offer credence to this assessment. The bulk of the $8.7 billion is devoted to land-based (or sea-based) systems. The primary goal is fielding the Ground-based Missile Defense (GMD) system with interceptors at Ft. Greely, Alaska, and Vandenberg Air Force Base, California. Currently, MDA has fielded 20 interceptors in Alaska and four in California. 33 Much of the rest of the budget is for a wide range of projects dispersed across a broad horizon of concept development.

fixed hostile launch sites or an able to “stalk” mobile launchers (there are hundreds of both around the world), But logistics and costs rule against their being deployed in sufficient numbers to provide effective global protection against limited strikes; they would need to be stationed everywhere throughout the Eurasian landmass, and basing rights, construction, maintenance, as well as 24-hour alert status would be clearly unacceptable by any standard, either logistically or economically. This is why land-based systems have a much more logical use in regional settings, where they are vectored to cover a given area, such as the Alaska system vectored for late-midcourse and terminal-phase defense against missile strikes aimed at the United States from North Korea or Iran. Much is the same with sea-based systems, except they have more flexibility to come and go over two-thirds of the Earth without being concerned about basing rights and would require far less complex system operations. In certain settings (Sea of Japan, South China Sea, Indian Ocean, Mediterranean) they could be used effectively for limited boost-phase interception (North Korea, Iran, Pakistan) but inland launch sites would be out of range. To deploy enough Aegis cruisers to offer even partial global protection would be exceedingly costly. Even if both land and sea were combined for GPALS, the logistics and costs would be prohibitive. And neither land nor sea systems can deal effectively in the boost phase where a surprise missile attack is launched either from a submarine or the deck of a freighter or, indeed, from a covert mobile land missile – all three highly credible threats. That leaves the SBI which – as Clementine demonstrated for Brilliant Pebbles – is significantly closer to achieving concept development for wide-ranging boost-phase kill capabilities than either land or sea systems. Arranged in at least one constellation of 1,000 to 2,000 interceptors (watermelons in “life jackets”) placed in orbit 290 kilometers above the Earth (each deployed between 800 and 1,600 kilometers apart), the SBIs acting in concert could (1) be on “alert” at all times; (2) “see” across a 360-degree space-Earth horizon to spot firings from either fixed, mobile, or subma- rine platforms and issue instantaneous warnings within the entire constellation and to all other defense systems; (3) dispatch appropriate SBIs out of the constellation to swoop down, streak out, or climb to meet the ballistic missile while it is still “hot” or in its early midcourse trajectory before it can deploy its warheads; and (4) in the event of mission failure, enhance the long-range tracking capabilities of land- or sea-based interceptors to engage the incoming warheads in the midcourse and terminal phases of the missile strike – hence, the term “layered defense.” But that is not happening. (See footnote 204 for relevant cost figures).

35 Ibid.

For fiscal year 2008, MDA requested nearly $227 million for the surface-based Kinetic Energy Interceptor (KEI), with the program narrowing its focus to a 2009 flight test of the interceptor booster. The 2009 test flight is considered “the final demonstration of readiness to proceed with the overall development and test program” of the system. 34 Congress ultimately appropriated $327 million for the program for FY 2008. MDA is seeking $376 million for KEI in FY 2009, though the timeline for when it could be operationally deployed is far from certain. 35

MDA requested $517 million for the Airborne Laser (ABL) for 2008, and received $475 million from Congress. For FY 2009, the administration requested $406 million. After a series of ground tests in 2008, MDA hopes to test whether the ABL can shoot down an in-flight target missile in 2009. By that time MDA expects to determine which program, ABL or KEI, better meets its needs for a boost-phase system. 36

In FY 2008, the U.S. Navy received over $1.12 billion for the Aegis ballistic missile defense program; in FY 2009 the administration requested slightly more than $1.15 billion for Aegis BMD. 37

Since North Korea launched a ballistic missile over its territory on August 31, 1998, Japan has had a growing interest in sea-based missile defense system compatible with their Aegis cruisers (see section 6 for a discussion of this and other international missile defense issues). By 2004, this interest had reached a stage where Japan sought a formal joint program with the U.S. Navy to provide such a capability, and this was a very positive development during 2004 and early 2005 – as was Japan’s insistence on a 53-centimeter-diameter interceptor missile that will fit in the existing Vertical Launch System (VLS). It now appears, thanks in part to a major Japanese investment in a joint U.S.-Japanese program to develop such interceptors and deploy them years earlier than 2014, the United States will also have a more robust sea-based defense, without the need for a picket ship role, within the next several years. This development, in conjunction with an impressive five-out-of-six successful test record, has given the sea-based defense option a much more prominent

The Politics Against Missile Defense: Historical Analysis
role in the Pentagon’s missile defense architecture.38 In 2006, the two nations concluded an agreement on a joint development of missile defense system. For the fiscal year 2009, MDA requested $151 million for the Japanese Cooperative program and is asking for $1 billion through 2013.39

One dog, however, is not barking: the space-based interceptor. Funds allocated: zero.

In its 2004 budget request, the Missile Defense Agency requested $14 million for SBI-related research, or about 1/643 of total funds requested. Congress approved the $14 million. Subsequently, MDA “decided not even to spend that much, deferring any space-based interceptor work until 2005 at the earliest.”40 The administration then decided against including funds for space-based defenses in its 2005 budget request to Congress. In the 2006 budget, MDA requested $673 million between fiscal years 2008 and 2011 for developing, and testing a space test bed, with the goal of fielding a system of spaced-based kinetic energy interceptors housed within 50 to 100 satellites.41 In the 2007, MDA indicated that it would ask for $45 million for the space test bed in 2008. However, it only requested $10 million, an amount subsequently disapproved by Congress. For 2009, MDA repeated the request. Over the past three years, the initial budget of $673 million for the period of 2008 and 2011 has thus been reduced to $268 million for 2008-13.42

Thus, 16 years after BMDO under President Clinton cancelled the Brilliant Pebbles program (December 1, 1993), there is still no appropriation of funds to initiate a space test bed and only a $5 million appropriation in 1991 to study the feasibility of space-based interceptors even though Brilliant Pebbles was formally approved as a major defense acquisition program. Clearly, the MDA under President George W. Bush continued the Clinton ban on a space-based interceptor until the last year of his second term, giving credence to Canavan’s suggestion that the MDA still “implicitly respects the ABM Treaty.”43 Since budgets reflect real policy sought by an administration, it is difficult to avoid the question, how long will America operate under the dictates of Mutual Assured Destruction?

U.S.A. watchers from around the world – particularly those who specialize in looking for clues (as in congressional budgets) about America’s military and defense capabilities, intentions and vulnerabilities – most surely already have noted the SBI void to their political leaders. And for those who think ill of the United States and are looking at ways to enhance nuclear blackmail opportunities (or worse), the news must be especially intriguing and for them raises yet another question, “Where is their SBI? It is not on any of their lists...”

Government Failure
What then is the future of missile defense in light of all of the paradoxes that have dogged it over the past 40 years? The answer is both simple in its expression and complex in its meaning: Americans will get effective defenses when they demand them but not likely before then.

There is yet another paradox here. Over the years, opinion polls have consistently shown a significant majority of Americans who want themselves defended against possible ballistic missile attack (indeed, a respectable number believe we already have missile defense) and a very clear but small minority who are strongly against this idea. In an idealized version of what “government ought to do,” conventional wisdom would have “government” (mindful of this significant majority and ever alert to the security needs of its people) long since humming along to supply a pretty decent system. But that has not yet happened.

It is not just a matter of a president or a Congress or the eternal bureaucracies “not doing the job,” it is all the above – plus. Because taken together, they all are inseparable components of the single corporate entity of our federal system: the government of the United States of America. Thus far, there has been a failure of this government to see to the needs of its people concerning the matters discussed here, a concern which is clearly reflected in the texts of the state resolutions found in appendix A – to petition the federal government for protection against foreign aggression, a procedure, it is believed, never before used for this purpose.

The paradox continues in the sense that the government has failed to provide effective missile defense largely because

39 MDA 2009 Budget request, 22.
41 See Marc Selinger, “MDA Defends Renewed Interest in Space-Based Interceptors,” Aerospace Daily and Defense Report, April 12, 2005. If this plan is pursued, the 50 to 100 satellites called for would be a small fraction of the 1,000 Brilliant Pebbles constellation of the 1990 plan – almost 25 years after the initial operations capability date that had survived the scrubbing of numerous technical groups, including the 1990 Defense Acquisition Board, which approved Brilliant Pebbles as SDI’s first major defense acquisition program.— See the MDA Budget Request overviews for 2008 and 2009.
the demand for it has not been strong enough to overcome the demand against it. In this context demand is proactive behavior and is not the same as “want” or “in favor of,” which is passive behavior. This is explained in Dr. James M. Buchanan’s work in public choice theory, for which he was awarded the 1986 Nobel Prize in Economic Sciences. Applying certain economic terms as a means to focus political analysis, most particularly “supply” and “demand,” public choice theory offers a “theory of government failure” that:

...has been the avenue through which a romantic and illusionary set of notions about the workings of governments and the behavior of persons who govern has been replaced by a set of notions that embody more skepticism about what governments can do and what governors will do... the analysis attempts to relate the behavior of individual actors in the governmental sector... persons in their various capacities as voters... as elected representatives, as leaders or members of political parties, as bureaucrats (all of these are “public choice” roles) to the composite of outcomes that we observe... Public choice theory attempts to offer an understanding... of the complex institutional interactions that go on within the political sector.44

As Buchanan explains, in a democracy, government exists to supply “goods and services” demanded by the voter (citizen). Government breaks into roughly two parts: the “agents” or elected representatives (president, legislators) and the “suppliers” (the nonelected bureaucracy). These “basic units are choosing, acting, behaving persons rather than organic units such as parties, provinces, or nations,” so that individual preferences and interests compete and are always present in the political marketplace.

Thus, “political exchange” is a constant and defines “a set of possible trade-offs among alternatives for potential choice, whether the latter be those between apples and oranges at the fruit stand or between peace and war for the nation.” At any given time, then, government functions include a constant exchange of who’s doing what, how, and where to whom, so that the outcomes usually will be “that one which best satisfies... the voter who is median (in the middle issue-wise) among all voters.”

What this means is that compromise is a natural state of democratic government and when the differences are narrow, the median produces an outcome most of the time that is satisfactory among all voters, that is, a strong consensus exists based on broadly shared interests. But where differences are so diverse and possibly hostile, the median is watered down so “there is no stable group decision attainable by majority rule; the group cannot make up its collective mind; it cannot decide.”45 Nowhere is this particular state of government failure more stunningly revealed than in the previously discussed account involving SDIO and Congress in the enactment of the Missile Defense Act of November 1991 (the split-the-baby-compromise) and its aftermath, which ended work on the space-based interceptor.

This phenomenon essentially is what has plagued this issue, particularly since the 1980s, which still continues: the overwhelming passive majority “wanting” missile defense and “expecting” government to provide it “as soon as it is able” versus a small proactive minority demanding, sometimes in nerve-wracking choruses, that no such thing will be tolerated – with the government responding in this “po-
political exchange” by supplying contradictory outcomes that have left missile defense in a techno-political cul-de-sac.

The above model helps explain this. Assume a reasonably well-estimated 15-year average of 70 percent of Americans polled as favoring the idea of missile defense, 20 percent against, and 10 percent undecided (not relevant here). 46 The 70 percent are not particularly focused on the subject, because they are busy with other preferences dealing with domestic issues (home, school, jobs) and are quite willing to accept “progress” as defined by government; this without knowing too much about the subject or its political implications, that is, passively without demand. The 20 percent have a focused preference against missile defense, in part motivated by strong political and philosophical reasons (such as pro-MAD advocates), and are engaged in “public outcries,” that is, proactive demand.

Both groups can do political damage to the legislature and the bureaucracy. The government’s dilemma is how to satisfy both.

The past is past and the question is, what can be done to fix it? Insights can be found by looking at September 11, 2001, which “changed forever America as we knew it.” It is essentially the same lament that defined Fort Sumter, the Archduke assassination, Pearl Harbor, and other such defining moments in American history.

In each instance, the voters, elected representatives, and the bureaucracy had struck a median between remote “forces of darkness” and the “demands of peacetime and domestic tranquility.” People were “aware” of such dangers but – quite reasonably – content to keep a wary eye on these outside events, while getting on with the business of tending to their own business.

Then – wham! The American mentality shifted with the “surprise” advent of the Civil War, World War I, World War II, and other events that can be cited. 47 And the median also shifted from benign watching to demanding that something be done now.

In the case of 9/11, the American mentality regarding terrorism was at one level (call it “pale yellow”) at 6:00 a.m. and by 6:00 a.m. on September 12 leaped to another level, “flaming red.” The nation learned with a high tuition payment.

The matter, thus, to be determined is whether or not the majority of American voters will demand an effective missile defense before the fact or after the fact, where some estimates calculate a huge loss of life and extreme infrastructural damage that could occur. 48

To try to deal with the missile defense impasse before the fact, the voter must do these things:

1. Understand the basic requirements for an effective missile defense
2. Understand the nature of the political opposition
3. Understand the nature of the threat, that is, the continuing problem of weapons of mass destruction proliferation
4. Insist, absolutely insist, that the nation’s elected officials and bureaucrats be transparent in their views about missile defense, and for those who oppose, the voter must insist that they explain why the defense of their constituents takes second place over whatever else is on their agendas

Whatever may be written or said in the future about whether or not the American people chose to defend themselves against ballistic missile attack, it will not be that “The people were never told.”

46 Polls conducted in several states in 2003–04 are close to this pattern. For instance, a January 2004 poll in New Hampshire sponsored by the Missile Defense Advocacy Alliance shows 75 percent of 600 registered voters favor missile defense and 21 percent oppose it. The Pew Research Center for the People and the Press in January 2003 released data for the preceding three years that averaged 74 percent favorable and 9 percent unfavorable. The National Missile Defense Study conducted by the Opinion Research Corporation in July 2007 showed that 83 percent of Americans are in favor of a national missile defense system. According to the poll, 60 percent of Americans thought that missile defense systems should be based in space if it enhances the security of the United States and its allies. See http://www.missiledefenseadvocacy.org/web/page/846/sectionid/798/pagelevel/3/interior.aspx (as of November 12, 2008).

47 Dr. John Norton Moore, director, Center for National Security Law, University of Virginia, has dealt comprehensively with the subject of war and peace and government failure. His latest book, Solving the War Puzzle (North Carolina: Carolina Academic Press, 2004), covers the subject extensively.

48 The Independent Working Group has looked at a number of scenarios. One involves al-Qaeda, or a similar group, outfitting five “tramp” freighters or possibly container ships with nuclear-tipped (15-kiloton, Hiroshima size) Scud-B missiles. The number five was selected because the pattern of mounting “the mother of all” attacks, at least on September 11, involved at minimum five commercial jets, three of which succeeded. Were such a cataclysmic event to be contemplated, it seems reasonable to assume that five vessels likely would be involved, with, say, three deployed off the East Coast (New York, Washington, and Norfolk and the Atlantic fleet) and two off the West Coast (San Francisco, San Diego and the Pacific fleet). The combined death toll projected by reliable data could be as high as 3.729 million, not counting a like number of injuries, plus extreme damage to infrastructure. While not attempting here to assess the probability, it should be stressed that the capability is realistically available and, thus, deserves to be factored into homeland defense planning. See Institute for Foreign Policy Analysis, “Scenarios Involving Various U.S. Cities Attacked by al-Qaeda Terrorists with Sea-launched Scud Nuclear Missiles,” 2002.
What follows is a summary of the discussion among members of Panel 4 which addressed political issues confronting the development and deployment of a robust missile defense.

Panel Members
Chair: Dr. Daniel I. Fine
Mr. Ilan Berman
Mr. Brian Kennedy
Mr. Eric Licht
Mr. R. Daniel McMichael
Dr. Kiron Skinner
Dr. Robert F. Turner

I. Can the “failure of government” model help explain the history of missile defense policy formulation, and is it a constructive roadmap for space-based missile defense advocacy?

The nature of the political problem surrounding missile defense is a systemic one which has transcended individual administrations and politicians. From the 1960s onward, the government of the United States has systematically failed to protect its population from the threat of ballistic missile attack, despite having both the political means and the resources to do so. Much of this can be attributed to an ideological embrace of Mutual Assured Destruction (MAD), a doctrine which intentionally left the population of the United States vulnerable to nuclear attacks.

Another explanation for the political deadlock over missile defense is that of a failure of government. From this perspective, the low priority given to missile defense by successive administrations is a response to the political priorities of the electorate itself. Also, huge costs resulting from U.S. military actions in the Middle East have obfuscated not only the growing need for missile defense but also its relative affordability in the scheme of things.

The foregoing analysis suggests that politicians and decision makers must be engaged, raising the missile defense issue in the proper political context, that is, that the American people still are not protected, which is unacceptable in this period of proliferation of weapons of mass destruction. Nevertheless, even with strong national demand, certain systemic constraints to progress exist. Institutionally, both the U.S. military and the civilian bureaucracy are rooted in routine, with innovation occurring only in response to a major external incident (such as the 9/11 terrorist attacks) or one from within, such as a new leader or a realignment of budget priorities. The result is that successive administrations are content merely to “satisfice” – that is, to fulfill minimally the political requirements with regard to missile defense. Reinforcing this situation is a strategic culture based largely on MAD that informs the worldview of America’s political elite.

A potential counterweight exists in the American public who want the United States defended from ballistic missile attack. However, this segment of society is not sufficiently politically aware and does realize that a problem exists. It is this constituency that must be addressed directly with the issue the U.S. government has so far failed to raise: that protection against ballistic missile attack is a matter of national survival.

II. Does MAD exist in de facto form as the underlying basis of missile defense and indeed to nuclear modernization and space development?

Although the Bush administration officially abnegated the doctrine of Mutual Assured Destruction by withdrawing from the ABM Treaty in 2002, it still remains a dominant cultural force in U.S. strategic, defense and security policies – indeed, even influencing elements of our foreign and space policies.

Basically, MAD is the doctrine that emerged in the 1960s through arms control agreements that gave the U.S. and the USSR an “even” balance of nuclear weapons that could be targeted on each other, but would deny each country the means to defend its own people from missile attack.

Even though this doctrine no longer is in effect, there remains a cultural holdover within the United States that continues to influence our missile defense posture, per the following examples:

1. The current land-based systems in Alaska and California are vectored to protect against a missile attack only from North Korea – and not to “threaten” China’s growing offensive nuclear missile capability. Also, the land-based system to be deployed in Poland is designed only to protect from a missile strike from the Middle East – likewise, not to “threaten” Russia’s offensive nuclear missile capability.

2. U.S. policy statements continue to stress that tests involving the development of sea-based systems (notably the Aegis anti-missile system) will be used only against rogue states, if used at all. As an example, in June 2008, one successful test using the Aegis system to intercept
a missile midway on course to its target – having succeeded in the exercise – was immediately dismantled by the Navy. A higher-level policy statement was issued to make clear to China and Russia that the exercise was not intended to threaten the integrity of their offensive missile systems.

3. Some within the space policy community argue that deployment of a space-based interceptor missile defense system, such as Brilliant Pebbles, would weaponize space and, therefore, should be outlawed through provisions of a new space treaty. The counterargument holds that space already has been weaponized for over 60 years (German V-2 in WWII; Sputnik in 1957; military satellite communications, including intelligence, evolving since 1960). Those still adhering to the MAD culture argue that SBIs designed to defend civilian populations would devalue both Russian and Chinese offensive missile capabilities – and thereby “destabilize” relations between major powers.

III. What issues comprise the next political battle-grounds on matters relating to missile defense?

The principal domestic problem that obstructs needed missile defense development and deployment is an inadequately informed Congress and general public. This has enabled MAD to remain a powerful concept, particularly as a watchword for stability, preserving the fallacy that peace can be achieved without missile defense, nuclear weapons, or the requisite defense expenditures. An alternative to MAD, meanwhile, has not been adequately presented or “sold” to the American public.

At the same time, however, a constituency receptive to such a worldview is emerging. The events of 9/11 have had a catalytic effect on American approaches to defense, and have brought awareness of homeland security issues to the town level. This development is visible today in the creation of local committees, the growing political activism of veterans groups, and the blurring of state and federal lines with regard to homeland security planning. This new grassroots constituency represents an unexpected opportunity paving the way for the empowerment of a cadre of missile defense advocates.

On the international front, two overlapping challenges exist: how to optimize the current GMD rogue-state model, and how to evolve it into a comprehensive architecture comprising space- and sea-based anti-missile components. With regard to the former, the Bush White House itself has made clear that the initial deployment now underway is oriented against a limited, single-state rogue threat. Yet the dynamics of contemporary proliferation, as demonstrated by Pakistan’s nuclear network, and rapid ballistic-missile and nuclear-weapon advances on the part of North Korea and Iran, demonstrate that space-based defense has an important role to play in combination with ground- and sea-based missile defenses. Further underpinning the need for space defenses is the fact that Russia and China remain antagonistic to American missile defense development that includes space-based interceptors and are both, albeit in varying degrees, strategic competitors of the United States.

At the same time, as discussed in section 6, significant progress has been made in missile defense cooperation between the United States and several of its allies. This foreign constituency represents a positive development, making it more difficult for both the government bureaucracy and the U.S. Congress to ignore missile defense, or for critics to claim that missile defense efforts are driven by American exceptionalism. The United States should continue to explore opportunities for increased cooperation on missile defense with allies.

IV. How important is consensus building (strong bipartisanship) in support for these missile defense-related issues?

Congress wields critical decision-making power. As a result, promoting missile defense, as well as space and nuclear modernization, requires the active engagement/participation of the legislative branch. However, approaches to Congress must be informed by an understanding of the changes that have taken place on Capitol Hill. These include the ascendancy of “appropriators” to positions of policy-making authority, as well as the decline of institutional knowledge relating to missile defense because of the departure of key experts and staffers. As a result, the issue of missile defense in general, and space-based defenses in particular, often does not receive a sympathetic hearing in either congressional chamber, even among conservative and defense-minded members. Over time, this has led the Department of Defense to a pragmatic policy choice regarding which programs will be selected for favorable authorization and approval consideration from Congress. This choice has largely excluded space-based missile defense.

Consequently, a pressing need exists for a cadre of sympathetic members and staffers as well as for increased understanding of missile defense issues throughout the House and Senate. Simultaneously, greater awareness of the weapons of mass destruction/missile threat at the grassroots level is essential to coalescing support for American defense priorities and missile defense, in effect, making concerns “local” for policy makers on Capitol Hill.
V. What are the avenues through which consensus hopefully can be built?

As noted earlier, the current state of missile defense principally reflects a failure of government, while the actual development of defenses has been stymied by bureaucratic institutions. Consequently, two “communities” need to be targeted to build a missile defense consensus:

- **Outside the beltway** – Government failure cannot be reversed until the 70-percent-plus Americans who want missile defense are persuaded – through broad educational efforts – to demand it. The need for this is explained in section 4, under “Government Failure,” and should be carefully reviewed.

- **Education programs** need to be carried out (1) at the state level with governors, legislators, adjutants general, and homeland security officials; and (2) to and through the academic and civic leadership communities.

- **Inside the beltway** – Involvement in these educational efforts should include the executive branch beginning with the Office of the President and to and through the relevant cabinet officers, particularly of Departments of Defense, State, and Homeland Security. Coupled with that should be continuing educational efforts through to the bureaucracies of these departments.
The Politics Against Missile Defense

Current Opponents

Which is why we are here. We want to get something going on the East Coast quickly – before we lose something else – and we want to see more purposeful and forthright action in moving toward at least a limited global protection system, which requires inclusion of a space-based system.

But there is something amiss that’s holding us back that is neither technical nor economic. It is the lingering ghost of MAD.

In spite of the ABM Treaty withdrawal, the doctrine of Mutual Assured Destruction still remains the driving intellectual force upon which much of the opposition constructs its several different public arguments as to why missile defense is “unworkable” or “dangerous” or “provocative” or “threatening” or “destabilizing” or “wasteful” or “imperialistic” or “unnecessary” or “selfish” or “immoral.”

Right now MAD is being held in place by the cultures it has created, rather than by some legal instrument – this as a consequence of over 40 years of application in which its basic precept – that of holding the American population hostage to someone else’s weapons – has been a constant in the calculus of both the political and the strategic cultures that have driven significant parts of U.S. foreign, security and defense policies for so many years.

Ronald C. Tocci, Co-Chair
New York State Armed Forces Legislative Caucus
Summary Statement on East Coast
Missile Defense at Hearings
Albany, New York, May 25, 2004

The above statement places in sharp relief the essence of why missile defense still has not gotten off the ground both figuratively and in actual point of fact. Mutual Assured Destruction (MAD) was shaped initially by pacifist impulses of the 1960s, which then evolved over the decade into a de facto policy of creating national vulnerability through population hostage holding, and finally became fixed policy when it was codified for another 30 years in the Anti-ballistic Missile Treaty (ABM) Treaty.

And 30 years is a long time for a new societal behavioral pattern to be held in a legal straitjacket – long enough to force the reorientation of the habits and reflexes of countless hundreds of military strategists, diplomats, presidents, congressmen, layer upon layer of bureaucrats, academics, researchers, pundits, and gurus – all of whom have passed in steady streams through the innards of the American body politic from one generation to the next right into the twenty-first century.

It was indeed reorientation because until this period in American history it was unthinkable that the government of the United States would ever make a political decision that by design would keep its own people vulnerable to someone else’s weapons, thereby knowingly putting them in harm’s way. The whole notion not only ran counter to what Amer-
The international landscape of the years leading to each of the two states of wanting to be liked, of not wanting to offend. America had acquired two post-WWII complexes that simmered just below the surface of daily events. One was a lingering unease about using "the bomb" on Hiroshima and Nagasaki. The other was growing dislike of being disliked – stemming from the American characteristic of "openness," of wanting to be liked, of not wanting to offend.

Both complexes made much of the nation especially sensitive about our global conduct and thus vulnerable to the mounting Cold War propaganda offensive against the United States, one particular strain of which hammered incessantly on two themes: (1) the United States had unleashed nuclear horror upon the world and must be prevented from doing so again; and (2) the U.S.-led NATO was clearly a belligerent act against the Soviet Union and Eastern Europe and thus was the true prosecutor of the Cold War. World peace and stability could only come if the United States withdrew from NATO and disarmed itself of nuclear weapons.

This was pacifism's new message. It was compelling and powerful, because the very future of mankind's survival was at stake. No more concerns about too many artillery pieces and battleships to cause one of those mere "conventional" wars, but this time, the BIG ONE, nuclear annihilation of the world – as Nevil Shute's stunning and gut-wrenching novel, On the Beach, made perfectly clear in its mushroom-shrouded horror to untold millions around the world, first as a book and then as a motion picture (1957-59).

End-of-the-world stories have been around for a long time, but the for-real, actual existence of "the bomb" created a level of credibility and terror among audiences of On the Beach that no other such story had achieved, at least in the twentieth century. The reaction was as ecumenical as it was electrifying, in that it provided a common ground for all sorts of personal and public sentiments, which included a...
heavy dose of Soviet “interest in preserving peace.” The universal cry: We cannot allow a nuclear holocaust!

Who would quarrel with preventing nuclear war? Not very many, but the pacifists, supported by growing bands of political idealists, had ideas other than building missile defenses and maintaining a strong nuclear deterrent. Their solution, first proposed in the fifties and gaining support in the sixties: unilateral and total nuclear disarmament by the United States to remove the “threat of aggression,” thereby pacifying the USSR away from an arms race, so that world peace would thus be achieved.

Not surprisingly, the Soviets provided support to a new “common ground dialogue” with the West that could “open the way to peace.” To give an international reach to the way to peace. “To give an international reach to the peace would thus be achieved.

The World Peace Council (WPC), a prime international conduit for pacifying the USSR away from an arms race, so that world peace would thus be achieved.

Thus, by the mid-sixties, Secretary of Defense Robert S. McNamara and others in the political world were proposing Mutual Assured Destruction: the United States and USSR, having a like number of nuclear weapons (“parity”) to strike back against each other’s citizens, were either nation attacked by the other; each would hold its own people hostage to the other. It was a neat idea. The “hawks” would get their way (no unilateral disarmament) and the “doves” would get a “balance of terror,” in which the United States would be “contained” from any notions of grandeur and the

2 Nevil Shute, On the Beach (Melbourne and London: Heinemann, 1957). Story: Set in Australia some time after nuclear World War III has devastated the northern hemisphere (the movie has it in 1964), only one part of the planet is habitable, far to the south of the globe. The survivors of the region await death by nuclear fallout. Most of the Australians choose government-promoted suicide instead of waiting to die. The story was remade into a 2000 television movie. Following comments are from “Books and Writers:” Nevil Shute (1899-1960) - original name Nevil Shute Norway, www.amazon.com, 1, 4; and www. kirjasto.sci.fi/nshute.htm: “The picture became one of the most celebrated anti-Bomb films, and attracted much attention in Moscow because it was the first full-length American feature to have a premiere in the Soviet Union. Stanley Kramer wanted to make a picture that ‘reflects the primary hopes and fears on the minds of people today’... Gregory Peck is the commander of a U.S. nuclear submarine [fleeing the fallout by going to Australia]...[and] has a desperate affair with [Ava] Gardner... Fred Astaire plays a disillusioned scientist who encapsulates the film’s theme: if we have nuclear weapons, they will be used, intentionally or by accident... The Pentagon refused to lend the use of an atomic submarine. Nevil Shute boycotted the entire (movie) venture... The New York Daily News, December 19, 1959, condemned the film: ‘This is a would-be shocker which plays right up the alley of a) the Kremlin and b) the Western defeatists and/or traitors who yelp for the scrapping of the H-bomb... See this picture if you must (it seems bound to be much talked about), but keep in mind that the thinking it represents points the way toward eventual Communist enslavement of the entire human race.” The theme of the film quickly became “Better Red Than Dead,” a slogan that was widely used into the 1970s.

3 The World Peace Council (WPC), a prime international conduit for communist propaganda and covert action, was conceived by the USSR’s politburo in 1949 and emerged as an organization in 1950. Its evolution in the succeeding years included adjuncts also established between the Stockholm connections and domestic antinuclear pacifists and their arms control allies, along with emerging antiwar groups, created a drumbeat that reverberated across the nation. Those who just a few years before – the traditional majority of Americans seeking protection by their government – were gradually marginalized as “hawks bent on destroying the world.”

Thus, by the mid-sixties, Secretary of Defense Robert S. McNamara and others in the political world were proposing Mutual Assured Destruction: the United States and USSR, having a like number of nuclear weapons (“parity”) to strike back against each other’s citizens, were either nation attacked by the other; each would hold its own people hostage to the other. It was a neat idea. The “hawks” would get their way (no unilateral disarmament) and the “doves” would get a “balance of terror,” in which the United States would be “contained” from any notions of grandeur and the

by the USSR: Afro-Asia People’s Solidarity Organization (AAPS); International Association of Democratic Lawyers (IADL); International Federation of Resistance Fighters (FIR); International Organization of Journalists (IOJ); International Union of Students (IUS); Women’s International Democratic Federation (WIDF); World Federation of Democratic Youth (WFDY); World Federation of Scientific Workers (WFSW); World Federation of Trade Unions (WFTU); and the Christian Peace Conference (CPC). WPC’s first major initiative was to launch the 1950 Stockholm Peace Appeal which declared that “the first government to use the atomic weapon against any country whatsoever would be committing a crime against humanity and should be dealt with as a war criminal.” This theme was promoted by leaders of every U.S. disarmament drive. In 1974, the WPC set up a new body, the Conference of Representatives of National Peace Movement, to meet annually and coordinate building up local WPC affiliates, particularly in the non-Communist countries. Continuing in 1975, the WPC launched a new disarmament effort, called the New Stockholm Campaign, calling for “ending the arms race through peace and nuclear weapon-free zones.” In addition to WPC’s national affiliates, other attending organizations included the Women’s International League for Peace and Freedom (WILPF), the Stockholm International Peace Research Institute (SIPRI), the United Nations Educational, Scientific and Cultural Organization (UNESCO), and the World Federation of United Nations Associations (WFUNA). The WPC was, at least until 1994, a creature of the Kremlin. During the next decade, the WPC was relatively quiet but in May 2004, the World Peace Assembly, the governing body of the WPC, met in Greece and elected Orlando Fundora, 77, a Cuban, as its president. Fundora criticized Russian leadership as “bland, odorless, colorless council – an organization that would not upset anyone.” He added, “It was visible that the collapse of the socialist camp debilitated the Council very much at the time.” At this Athens meeting there were 134 delegates from 62 organizations from 47 countries, (Orlando Fundora’s figures were 150 delegates, 60 member organizations, and 50 countries.) The newly energized WPC plans follow-up meetings on a regular basis. See Maldon Institute, Memorandum to the Independent Working Group, August 18, 2004. This document is in appendix G.
Soviets would be given their “place in the world” without resorting to belligerence.

But wait a minute. What happens if the United States proceeds with its missile defenses? Everything goes out of balance, because the United States might prevent a strike against it and then could strike back at its own choosing. The resulting “power advantage” would guarantee America’s permanent position as the world leader – leading of course to instability. The answer was the ABM Treaty, brought forth under the Nixon administration. Hostage holding was never discussed or debated in any meaningful way as a defense policy matter.

The ABM Treaty did not do what it was supposed to do: the prohibiting of missile defense was designed to create a stable environment which would prevent a nuclear arms race, ease tensions, and bring stability to East-West relations. By every standard of measurement, the ABM Treaty proved irrelevant to the whole geopolitical landscape right from its ratification to its demise 30 years later. It did not stop the arms race. It did not ease tensions. It did not bring stability.

The only thing the ABM Treaty did achieve was to provide a level of unilateral vulnerability to the American population, because right from the start Moscow violated treaty provisions again and again without meaningful protest from Washington, and the United States in turn repeatedly chose “narrow interpretations” of ambiguous parts of the treaty to hobble further the limited missile defenses that were permitted for our military assets (but not our population). Meanwhile, the Soviet SS-10s and SS-12s, short-range ballistic missiles which were never officially counted as missile defense assets but were (and are) used as such, plus other permitted “point defense” deployments around Moscow, gave far more protection to the Soviet military and parts of its population than anything the United States had – or has. Thus, no “level playing field” ever occurred.

Some will argue that the ABM Treaty, as flawed as it was, helped to prevent nuclear war. This again is wrong by any measure. It was the continuation of the U.S. nuclear deterrent, as part of the “balance of terror,” that did what it was supposed to do to keep the peace. That is still the case. We still cannot defend but we can strike back if someone hits us.

Perhaps, MAD could have gone on indefinitely if it were just two nations (like two guys at the poker table with their Colt .45s cocked and pointed at each other – OK for card playing but not for becoming pals) but this kind of continuing standoff makes any realistic hope of achieving some kind of lasting rapport virtually impossible. Add to that the growing nuclear proliferation – now so clearly evident – and the idea of holding “cocked .45s” at the people of 20 or so nations becomes absurd on its face.

The ABM Treaty now is gone but as Ronald C. Tocci (quoted above) observes, this is because the arguments against missile defense (discussed below) have been used for so long within this 30-year legal straitjacket. They have been repeated again and again with such intensity that the nation’s reflexes long have been conditioned to reflect the rules of the treaty and nothing else – so that American policy makers have been responding in a Pavlovian mantra and with slogans, often mouthed without thought.

Consequently, the chanting rhythms generated by MAD have caused a kind of defense and foreign policy addiction, like smoking. The U.S. government has been smoking MAD for over 30 years and has yet to kick the habit.

The evidence of this still is inarguably clear. Recent examples cited by Tocci in his summary about missile defense include two significant references: 49 retired generals and admirals who wrote to President Bush on March 26, 2004, and the comments of a senior U.S. official who visited Canberra, Australia, in February 2004.

The retired generals and admirals called for postponement for technical reasons of ground-based strategic midcourse ballistic missile defense and they then went on to state, “U.S. technology, already deployed, can pinpoint the source of a ballistic missile launch. It is, therefore, highly unlikely that any state would dare to attack the United States or allow a terrorist to do so from its territory... thereby risking annihilation from a devastating U.S. retaliatory strike.”

This obviously is a continuation of the “balance of terror” status enabled by MAD: we leave our people defenseless, essentially as a dare for someone to do something and assume that no one will.

The Tocci summary then cites a report in a major Australian newspaper, The Australian, on February 10, 2004:

“... The frank insights into the US plans to develop a missile shield over the US came in a briefing with senior US officials who are visiting Canberra. US State Department Bureau of Arms Control senior advisor for missile defence Kerry Kartchner [after discussing U.S. restricted missile defense plans against only rogue states]... said China and Russia were the only powers that could trigger an “offensive-defensive” arms race. “[B]ut we have taken

The Politics Against Missile Defense: Current Opponents

Missile Defense, the Space Relationship, and the Twenty-First Century

steps in both cases to assure China and Russia that the limited modest missile defense the US plans to deploy is not aimed at them . . . 5

Additionally, the Tocci summary notes that so far no definitive actions have been taken to restart efforts regarding a space-based system and quotes a statement reported in the April 2, 2004, Missile Defense Briefing Report, which explains itself:

"Space-based capabilities are not on the American agenda for the near future, according to the Pentagon’s top missile defense official [speaking before a missile defense conference on March 22]. . . . Missile Defense Agency (MDA) director Lieut.-Gen. Ronald Kadish said that the contemporary ballistic missile threat does not currently warrant a space-based anti-missile capability. . . . "From the standpoint of threats we face... we don’t need to put weapons in space" 6

Finally, the Tocci summary concludes with these policy points:

It is pretty clear that our government continues a policy of selective hostage-holding... It is a policy that must be brought out into the full light of day to be examined openly and candidly by the people of the State of New York and of the rest of the nation. This can be done by asking ourselves, as citizens, and, most pointedly, also asking our political leaders – elected and pretenders alike – this one critical question: Should it be the policy of the United States Government deliberately to hold its own citizens hostage or otherwise vulnerable to the offensive weapons of another nation or terrorist group?

The answer is vital to our future. If we choose to hold ourselves, our families, our friends, our neighbors deliberately defenseless to someone else’s weapons, then it should be publicly recognized as a conscious American decision and then we should be prepared to accept the consequences... If we choose not – then we will want a very good missile defense.

And for those who are against missile defense for New York and other states, there’s a question for them: why do you not want to defend us from a missile attack? What is it that makes you so terribly hostile to the idea? However all of these questions may be answered – or even if they are never asked because people don’t care all that much – whatever – Americans will get their missile defense. The question here is when? Will it be before the fact – or after the fact... Will there be, at some point, another sort of 9/11 inquiry? Let us hope not. 7

If we are to kick the MAD habit, elected officials, policy makers, and citizens alike need first and foremost to understand not only who the opponents of missile defense are but why they believe what they believe. Only in this way can the vitally needed public discussions and debates be conducted rationally and with constructive purpose. It is, therefore, important to understand the basic themes currently being used to try to persuade the nation to keep essentially what it still has: a continuing policy of population vulnerability.

Missile defense opponents base their arguments on one or more of five broad themes: missile defense of the U.S. population (1) is wasteful and ineffective; (2) is provocative and destabilizing; (3) will weaponize space; (4) will give America too much unilateral power; and (5) is morally wrong.

Missile Defense Is Wasteful and Ineffective

Much of the work of the Independent Working Group has focused on systems, technologies, and cost factors that clearly make the case that the American people can have cost-effective global protection systems against limited missile strikes; moreover, systems that can also protect the citizens of our allies and other friendly countries, and even the people of nations unfriendly to us (if they would so choose).

Yet, the mantra of the MAD culture still exists, in that significant elements of this technology (and the economic efficiencies it can provide) still are not being used that could be used – such as nano and other lightweight technologies – so that even those critics who are looking more at performance rather than politics at times have well-founded concerns that deserve to be vetted and answered.

How does this occur? It has to do with how knowledge is used and the political and cultural climate that governs how well that knowledge is used.

For example, a July 2004 Congressional Budget Office (CBO) report, called “Alternatives for Boost-phase Missile Defense,” estimates that costs could reach upwards of $78 billion for the most effective option (out of five options studied) for a 20-year space-based operating system – very expensive because of the weight of the components assumed in the study, that is, the heavier the kill vehicle (KV), the bigger the booster required to deliver the KV into space and the greater the cost. This compares with $19.1 billion (in 2008

dollars) for the *Brilliant Pebbles* system discussed extensive-
luely in section 2.8

The 50-page CBO report, which drew heavily on a
400-page 2003 boost-phase study by the American Physical-
society (APS), doubtless is essentially correct in its $78
billion cost projections in terms of the technology it looked
at. And therein lies the rub: the design assumptions used in
both the CBO and APS calculations include heavier com-
ponents than those used in the GPALS system, which was
technologically feasible well over a decade ago. When com-
bined with the rocket equation and the fundamentals of or-
bital mechanics, the use of available lightweight technol-
ogies – including significant progress in miniaturization
during the past decade – should reduce the CBO/APS cost
estimates by over 80 percent to a figure consistent with the
1990 GPALS estimate.

Thus, calculations using different assumptions may be
technically accurate in every respect, but the outcomes very
often are quite different. A design assumption for a new por-
table camp stove based on cast iron rather than an alumi-
num alloy will give different cost/performance readouts –
and still be a legitimate study – but pointed in a direction
not terribly suitable for a product to be lugged through the
woods. Wags sometimes call this “design for failure,” a tech-
nological state that far too often exists to achieve political
ends by generating negative self-fulfilling prophecies. This
has been one of the principal reasons for government fail-
ure thus far in defending the American people from mis-
sile attack.

And government still appears – even in this post-9/11 era
– to be held captive to the MAD culture that sees popula-
tion hostage-holding as a preferred instrument of Ameri-
can defense and foreign policy. It is a government state of
mind that continues to drive the instinctive behavioral pat-
terns of many of its policy makers, design engineers, and
program managers away from maximizing the existing light-
weight technologies now available for effective missile de-
fense. What used to be, “Is it treaty compliant?” has become,
“Is it MAD compliant?” The question remains unerased, an
indelible reflex.

This is not to say that there have not been good studies,
based on good science and leading-edge technology, that
look at missile defense harshly. But they do so with a bias to
seek out and evaluate designs that hope to succeed, rather
than ones prone to failure. Fortunately, such work has been
ongoing throughout the last half-century and still contin-
ues.9 The problem, however, still is this: since the advent of
the ABM Treaty, continuing through to the present, these
kinds of efforts more often than not have been systemat-
ically marginalized by government as “not relevant to the
problems of the day.”

Thus, to a disturbingly large degree, the trend line of poli-
cy thinking and government research and management still
centers on the analytical perspectives arising from reports
and studies that continue to shape their formulas toward
cast iron stoves, such as the particular ones referenced here
from CBO and APS, as well as from the commentaries of
other “authoritative” bodies that very openly oppose mis-
sile defense.

Meanwhile, *Clementine* gathers dust in the Smith-
sonian.

How is this matter to be dealt with? There can be only one
way: the technology affecting missile defense requires the
highest degree of professionalism in advocating fully cost-
effective systems, if the trust and confidence of the Ameri-
can public are to be earned and if the critics who rely on
“bad” science and inferior technology are finally to be sent
from the field of play. Absolute technical honesty and ap-
plication and complete transparency in the motivations
of designers and policy makers are critical imperatives –
if the nation ever hopes to have effective global missile de-
fense systems before America is faced yet again with an even
worse 9/11 tragedy.

But the national voice will have to be very loud and very
clear for this to happen.

Missile Defense Is Provocative and Destabilizing

Nowhere is the rationale and justification for the MAD cul-
ture of hostage holding stronger than in the declaration that
missile defense is provocative and destabilizing.

8 See also section 4 of this report, in particular footnote 23, and relat-
ed discussion.

9 Missile defense historian Donald R. Baucom in “The Rise and Fall of
Brilliant Pebbles” (See appendix D) cites an impressive number of stud-
ies and reports of high professionalism, circa 1960-90, from various
research centers and agencies, including those of JASON of the MI-
TRE Corporation, the Defense Science Board, the American Institute
of Aeronautics and Astronautics, the BDM Corporation, and the De-
partment of Energy national laboratories, as well as work in the De-
partment of Defense, that is, the three services and SDIO. Also, over
the last 25 years continuing quality work has come from specially
convened study groups sponsored by organizations such as the Her-
itage Foundation (which also spawned High Frontier in 1981 as the
first public missile defense advocacy group), the George C. Marshall
Institute, the Institute for Foreign Policy Analysis, and the Center for
Security Policy.
American missile defense will cause an arms race; will cause nuclear proliferation in such places as North Korea and Iran; will threaten the military “integrity” of China and Russia and thereby challenge their places in the world, and will as a consequence be destabilizing to world peace. America must not be allowed to acquire missile defense.

These are the screeds of a community of missile defense opponents that daily pepper the media and public policy worlds. They have been part of the nation’s rhetorical landscape for over 40 years, and for thirty of those years these pronouncements were protected and made valid by the ABM Treaty’s prohibition of missile defense. They have been repeated so often for so long that for some Americans these utterances have become conventional wisdom that carries the ring of truth to be accepted as a matter of course without challenge.

Therefore, these arguments must be taken seriously. Until the U.S. withdrawal from the treaty, it had been a losing proposition to refute them, not because they are difficult to refute, but because any serious challenges to them have been irrelevant. What would be the point of challenging the “evils” of missile defense when the ABM Treaty was in place to prevent missile defense? With the treaty gone, this changes. Refutation should be vigorously pursued.

The flaw in these views is that they have little or no basis in fact. They are instead based on philosophy and emotion and for some political advantage, where fact itself is irrelevant. The fact that there is no real basis in fact is obvious and to deny this is clear evidence of the dogmatic nature of missile defense opponents who use these arguments.

To begin with, arms races stem from competition for offensive weapons and while it is true that some arms races are designed in part to overcome someone’s defenses, the converse that the absence of defenses breeds the absence of offensive weapons is without historical basis. Indeed, this proposition is supported by irrefutable evidence that the United States never has had missile defenses for its population, much less its military installations (save for selective use of limited “point” defense, such as the Patriot). But that reality has not prevented either nuclear proliferation or nuclear arms buildsups; it has in all probability been the reverse.

The evidence also is clear that the past 40 years, most especially the last decade, have seen relentless buildsups and bold moves to spread the use of nuclear and other weapons of mass destruction, as witness evoling events in Russia, China, North Korea, and Iran (discussed elsewhere in this report). One of the few times there has been a significant slowing of momentum was in the brief period 1985-93, which was the height of missile defense development in the United States.

In other words, if anything, a credible missile defense – even in development stage – is much more likely to help slow an arms race and discourage proliferation because it raises the costs and lowers the chances of success for aggressor nations or terrorist groups to try to find ways to overwhelm an effective missile defense system with their offensive weapons. In this sense it can become a deterrent and thus contribute to stability. Arguably, there is some evidence of this likelihood, in that at least some of the reasons for the Soviet Union’s collapse was due to an inability to keep up with U.S. technological developments in this field. Even as the USSR was scaling itself down, it was engaging in ways to share missile defense technology and use – an effort that was discontinued by the U.S. government after 1993.

To close the loop in this logic train: if America has never had missile defense, why have the Soviet/Russian and Chinese nuclear arms buildsups continued unabated over these many years, as has the growth of proliferation? According to the MAD culture, one would have thought arms races and proliferation would have long since slowed – thus making a case based on fact that America indeed should continue to forego missile defense. But there is no fact to substantiate such a claim.

To the contrary, while certainly some arms control initiatives have proved useful – paradoxically because of U.S. buildsups during the Cold War – if history is any...
ample, effective missile defense capabilities could actually help to strengthen and enhance responsible arms control efforts, rather than to foster arms races and proliferation, as opponents so vigorously maintain. 12

If there is one sliver of fact at all in these assertions, it probably protrudes from the notion that an effective global missile defense system will threaten the military “integrity” of such evolving powers as China and Russia, by challenging their places in the world and, hence, be “destabilizing” to “world peace” – but perhaps not in the way most people think about world peace.

Instead, such a system could well be destabilizing to any expansionist ambitions these or other countries (or terrorist groups) might entertain but only if theirs were covetous ambitions toward other nations, such as the United States or its friends or allies. But short of that, why would any nation object to another nation wanting to defend itself? There is no rational answer, save one: it would be only if someone seeks an aggressive edge over someone else and hopes to achieve that edge “peacefully.”

At this point, the sliver of fact dissolves into missile defense objections that are based on philosophical, ideological, or political beliefs and resulting emotions, where factual evidence is largely irrelevant. There is no known evidence even to suggest that an arms race or instability occurs simply because a nonbelligerent nation chooses to erect defenses against offensive weapons.

This question was debated hotly in the 1930s, when British pacifists and appeasers objected violently to the idea of building the Spitfire and fielding anti-aircraft weapons.

The dilemma for a nation such as the United States is that history has shown repeatedly that lack of military and defense preparedness more often than not becomes the chief cause of triggering wars – not preventing them. Lack of preparedness and misjudging intentions and capabilities generate wars through miscalculation, which for instance has been the chief source of U.S. conflicts throughout its history. (See Donald Kagan, On The Origins of War and the Preservation of Peace (New York: Doubleday, 1995.) Thus, it can be argued that by failing to adopt missile defenses, the United States may suffer the unintended consequences of helping to fuel yet another arms buildup, ultimately leading to war by miscalculation, i.e., where the capabilities and intentions of other nations and terrorist groups are underestimated, in turn creating an incentive for a potential aggressor to increase and ultimately use offensive weapons, “to go for it.” The George W. Bush administration’s current nuclear modernization program recognizes this reality. Not only is it updating U.S. offensive nuclear weapons as a continuing deterrent against the offensive weapons of other potentially hostile nations, as well as terrorist groups, but it also has added missile defense formally as a part of this deterrent system.

12 The dilemma for a nation such as the United States is that history has shown repeatedly that lack of military and defense preparedness more often than not becomes the chief cause of triggering wars – not preventing them. Lack of preparedness and misjudging intentions and capabilities generate wars through miscalculation, which for instance has been the chief source of U.S. conflicts throughout its history. (See Donald Kagan, On The Origins of War and the Preservation of Peace (New York: Doubleday, 1995.) Thus, it can be argued that by failing to adopt missile defenses, the United States may suffer the unintended consequences of helping to fuel yet another arms buildup, ultimately leading to war by miscalculation, i.e., where the capabilities and intentions of other nations and terrorist groups are underestimated, in turn creating an incentive for a potential aggressor to increase and ultimately use offensive weapons, “to go for it.” The George W. Bush administration’s current nuclear modernization program recognizes this reality. Not only is it updating U.S. offensive nuclear weapons as a continuing deterrent against the offensive weapons of other potentially hostile nations, as well as terrorist groups, but it also has added missile defense formally as a part of this deterrent system.
are built willing allies for antithetical reasons which benefit both in seeking to drive public acceptance toward the common goal of stopping missile defense development. It is in this environment, for example, that the World Peace Council was so warmly welcomed in the 1950s and is still welcome today (see footnote 23 and appendix G).

For the ambivalent – those who for a variety of reasons are mixed about what to do – the constant drumbeat of “global instability” creates an emotional brake on supporting something that both reason and logic says the nation needs. But “not now.”

Sure, we probably need missile defense, but there is too much going on to stir up another hornet’s nest… terrorism… keeping good relations where we need them… delicate negotiations, accords, deals… the realpolitik of logrolling… fear of alienating constituencies and of losing the known status quo for the unknown… not now… later when things are better.

The result: inertia that cedes the field of play to the pacifists and anti-Americanists. Thus, inertia, which in and of itself is not necessarily pacifism nevertheless has the effect of being a pacificist impulse which contributes significantly to the critical mass of missile defense opposition.

The three taken together – pacifism, anti-Americanism, and inertia – clearly indicate the continuing dominance of the MAD culture of hostage holding in U.S. daily policy thinking. Only through public insistence for openness and transparency about security issues by political leaders and policy makers can this cultural construct be broken.

Missile Defense Will Weaponize Space

A shield against a sword will weaponize land. A Patriot missile against a Scud will weaponize a region. An anti-aircraft missile will weaponize air space. An anti-missile missile will weaponize space.

The same reasoning links all of these declarations: defending one’s self is an offensive act of aggression, because it tells the adversary that you mean to survive to strike back, thus “forcing” the adversary to acquire weapons – hence, “weaponizing” the environment (which becomes the defender’s fault). It ignores every human instinct of self-defense and discounts the centuries of legal tradition that codifies this as a natural right.

While pacifists often use such reasoning, the most successful practitioners are generally those individuals and states who have a vested interest in seeing their neighbors defenseless and who work ceaselessly to persuade them to remain so. Recorded history offers stark evidence of how this upside-down approach to war and peace leads to tragedy. It is likewise the line of reasoning that led to the MAD doctrine of hostage holding which was codified in the ABM Treaty – thereby overruling all other laws, natural and man-made, concerning the right of self-defense. But it is also the sense of impending tragedy that later saw U.S. withdrawal from the treaty.

This reversal of policy direction has created once again a major problem for missile defense opponents, for there is no longer any legal impediment to missile defense and this takes them back to where they were in the 1960s.

Then – as now – natural law supports self-defense. The UN Charter (Article 51) supports the right of a nation to defend itself and indeed the 1967 Outer Space Treaty places no restrictions on using non-nuclear space-based means to shoot down somebody’s incoming nuclear ballistic missile as it moves up and through space. Thus back then, the absence of any legal restrictions left a big hole in the rationale of the opponents’ arguments.

One could not hope to get very far with the American people if – in order to sell no missile defense – one had to describe the MAD doctrine of population hostage holding; better to bury the details in the fabric of something that would legally prevent missile defense “for everyone.” The ABM Treaty was the answer and, once it was advocated by President Nixon and Secretary of State Kissinger and ratified by a Democrat-controlled Senate in 1972, one did not need to explain anything except that missile defense was “illegal under the treaty.” Americans would and did abide by the decision of their bipartisan political leadership, so that missile defense proponents were quickly marginalized and ultimately deemed largely irrelevant in the grand scheme of things.

But when the nuclear arms buildup still continued and nuclear proliferation ballooned well beyond the Soviet arsenals, the flaws in MAD doctrine became increasingly evident, leading to U.S. treaty withdrawal in 2002. Now, it is the opponents who are being marginalized, not surprisingly, and the search is vigorously underway to find another means to outlaw missile defense.

The notion of a new ABM treaty is no longer feasible, with some 20 nations now involved (an enforcement nightmare), and land- and sea-based missile defense systems are too far out of the development box to stop in their entirety.

However, there is another avenue still open, still essentially untouched, where deployment of missile defense assets can be outlawed – space, through a new space treaty. And that is still the big one. Because space-based interceptors are critical to linking together land- and sea-based com-

13 See Turner, “Campaign to ‘De-Weaponize’ Space.”
ponents for a workable and cost-effective layered global defense system.

As discussed extensively in sections 2 and 4, the space-based interceptor (SBI) – which Clementine demonstrated for Brilliant Pebbles – is significantly closer to achieving concept development for wide-ranging boost-phase kill capabilities than either land or sea systems. Arranged in at least one constellation of 1,000 to 2,000 interceptors (watermelons in “life jackets”) placed in orbit 290 kilometers above the Earth (each deployed between 800 and 1,600 kilometers apart), the SBIs acting in concert could (1) be on “alert” at all times; (2) “see” across a 360-degree space-Earth horizon to spot firings from either fixed, mobile, or submarine platforms and issue instantaneous warnings within the entire constellation and to all other defense systems; (3) dispatch appropriate SBIs out of the constellation to swoop down, streak out, or climb to meet the ballistic missile while it is still “hot” or in its early midcourse trajectory before it can deploy its warheads; and (4) in the event of mission failure, enhance the long-range tracking capabilities of land- or sea-based interceptors to engage the incoming warheads in the midcourse and terminal phases of the missile strike – hence, the term “layered defense.”

But that is not yet happening. The logic pyramid discussed in section 4 – which was turned upside down on its tip in 1993 – still remains upside down after 12 years of geopolitical logrolling. Space-based capabilities still are not on the American agenda for the near future. MAD compliance is still in place with the major nuclear-weapon powers. Not surprisingly, then, missile defense opponents are resurfacing their standard arguments, but this time honed on why space-based systems simply cannot be allowed to happen; that missile defense will weaponize space, and that a new international regime (treaty) is needed.

The logic of this newly minted position of missile defense opponents is as simple as it is transparent. (1) If a new space treaty can be negotiated to outlaw missile defense in space, the United States cannot acquire an effective global protection, which is necessary to guard against the overwhelming preponderance of offensive nuclear missiles presently deployed or being developed all over the world (land- and sea-based systems cannot deal with this alone). (2) Thus, a highly significant level of population vulnerability is assured, that is, this preponderance of offensive nuclear power stays able to strike an unprotected American people, just as permitted under the old ABM Treaty (Mutual Assured Destruction). (3) By constraining the United States from going full measure to protect its people, the MAD doctrine of hostage holding once again is guaranteed in a new era of the “balance of terror” and pacifism’s successful 40-year legacy of denying protection to the American people is preserved.

Perhaps one of the best expressions of these views is presented in an October 2003 paper by Theresa Hitchens, vice president of the Center for Defense Information and member of The Bulletin of Atomic Scientists editorial board:

Emerging Bush administration plans and policies are clearly aimed at making the United States the

the doctrine of Mutual Assured Destruction, which President Bush has disavowed on several occasions. [Also, Aerospace Daily & Defense Report, December 13, 2004, quotes Terry Little, chief of the MDA’s Kinetic Energy Interceptor (KEI) program: “We’re going to continue, as money allows, to try to work light-weighing [and] miniaturization, but we’re not, in the near term, going to undertake any major... development activity to actually provide a space-based interceptor capability.” As noted in Reuters, “U.S. Shelves Move Toward ‘Star Wars’ Defense,” February 10, 2005, Lehner continued into 2005 his reassurances that there was no interest in “weaponizing space” and that the Missile Defense Agency was awaiting orders from Congress and the administration on whether to pursue space-based technology, stating, “Right now, the debate has not taken place on space-basing missile defense capability.” Reports on the administration’s budget plans suggested a new initiative for space-based defenses (for example, see “Administration Sketches Out Space Interceptor Program,” InsideDefense.com, April 5, 2005) – though no funds were provided before 2008. But in response to questions on this new direction, White House spokesman Scott McClellan told reporters, “Let me make that clear right off the top, because you asked about the weaponization of space, and the policy that we’re talking about is not looking at weaponizing space” (see Agence France-Presse, “White House Says It Is Not Looking at Weaponizing Space,” May 19, 2005). Thus, the administration invites a debate on weaponization of space but without taking an advocacy position, backed up by a serious proposal. So far, there has been little indication of interested advocates.

14 In what some might regard as nervous reassurance to missile defense foes that the George W. Bush administration plans no awkward surprises, Rick Lehner, director of communications, Missile Defense Agency, issued these two back-to-back statements shortly after Election Day in 2004: the first, an op-ed appearing in the Kodiac Mirror, November 17, 2004, was in response to a local critical about deploying space-based systems, and he states, “Not the least bit true. We closed our space-based laser research and development office more than three years ago, and there is absolutely nothing even contemplated at MDA to launch any space-based ‘lasers and interceptors aimed at targets anywhere on Earth.’” The second, a November 18, 2004, dispatch from Agence France-Presse, reports on Russian plans to deploy a new generation of ballistic missiles to overwhelm any U.S. defenses and also describes the U.S. ground-based missile defense projects in Alaska and California to protest against rogues like North Korea, as well as reveals plans to build a similar site in Europe to protect against a Middle East strike. The French news agency also observes that the U.S. system is not designed to protect against long-range attack from either China or Russia and then quotes Lehner that “This missile defense system [the proposed European system] being deployed is not a threat to either the Russian or the Chinese strategic deterrent force.” [The meaning, that both nations will continue to be able to conduct a first strike anywhere in the world before there would be any response. By every definition this is a continuation of...
first nation to deploy space-based weapons. There are several drivers behind this goal, including... vulnerability of space assets that are increasingly important to how the U.S. military operates, and the administration's decision to pursue missile defense... The Pentagon's just-revised missile defense plans include... the potential for space-based systems, in particular for shooting down enemy missiles in their boost phase as they begin to ascend... Although it is unclear if these plans are a deliberate foot in the door to the weaponization of space, their implementation would have that effect. A decision to move forward with space-based missile defense systems would end today's policy of restraint... It is imperative that the missile defense program not be allowed to solely drive a decision to weaponize space, especially in absence of serious consideration of the potential strategic, military and economic consequences.15

It is instructive to note that “serious consideration” presumably does not include the consequences of not protecting the American population from ballistic missile attacks by forces already in place, ones who would use space through which to launch their existing weapons. This omission, though perhaps unintentional, nevertheless suggests that space-based missile defense is an impediment to protecting against other consequences deemed more important than addressing the possibility of a sneak attack that could result in severe civilian casualties, one that would occur before the United States would in theory respond with a retaliatory strike: the MAD doctrine is clearly evident here – you nuke us and we’ll nuke you.

The use of the term “restraint,” as it is specifically applied here to a defense system against an aggressor’s offensive weapons, likewise, is instructive. Because it pointedly implies that defending one’s self is provocative and destabilizing, which is the apex of pacifistic thought and a close relative to both “passive resistance” and nihilism.

The question, though, is exactly how would space-based missile defense drive a decision to weaponize space? The answer is thin at very best.

First of all, space already is weaponized.16

Like the sea, space is a “medium,” which Webster describes as “a means of effecting or conveying something.” It could be life; it could be things, natural and man-made.

The sea is finite to the Earth. It is fungible so that the medium itself has no boundaries as a substance but remains limited by its environment. It is a medium through which or in which weapons can be passed or stationed. Webster describes weapons as “an instrument of offensive or defensive combat... a means of contending against another.” Therefore, following these definitions, a fixed radio buoy transmitting data for military use is a weapon, as is a torpedo which is made to pass through the sea, as is an aircraft carrier specifically designed to exist in the sea.

The sea has been weaponized for thousands of years and efforts to control that weaponization effectively through treaties have been quite limited, mainly through extending the sovereign shorelines of littoral states to include an agreed-upon area of contiguous seabed (which one nation occasionally steals from another). The one such effort in modern history to prevent weaponization of the sea was the failed 1922 Washington Naval Treaty limiting capital ships of the major pow-

15 Theresa Hitchens, “Weapons in Space: Silver Bullet or Russian Roulette? The Policy Implications of U.S. Pursuit of Space-Based Weapons,” in Space Weapons. Are They Needed? ed. John M. Logsdon and Gordon Adams, Space Policy Institute, Security Policy Studies Program, Elliott School of International Affairs, George Washington University, October 2003, 87-88, 95, 114. The same old themes continue a drumbeat with increasing frequency in a variety of publications, among the most prominent of which was a May 24, 2005, New York Times editorial entitled “Weapons in Space” which among other things claimed that “Nobody knows how well the new weapons might work, and there is concern, even in military circles, that basing weapons in space might trigger an arms race that would leave the United States, with its undeniable advantage in conventional forces, worse off than it is now. Another problem is cost. With virtually all weapon systems busting their budgets, the Pentagon should think hard before putting hundreds of billions of dollars into new space technologies. Congress and the administration need to assess whether a multilateral treaty to ban space weapons might not leave the nation far safer than a unilateral drive to put the first weapons in space.” Never mind the long-forgotten 1989-90 studies and critical reviews that showed space-based defenses were the most cost-effective and nearest-term missile defense options.

16 The discussion here is on “weaponization” of space, not “militarization” of space. Nearly everyone who looks at this issue agrees that space has been “militarized” at least since Sputnik in 1957 and the human ascent into space a few years later. Some would trace the weaponization of space to the V-2 of World War II, which traversed the lower reaches of space on its way to targets in England. It is the matter of what comprises weaponization of space that is being examined here. Many missile defense opponents argue that space has not yet been weaponized and that space-based missile defense would “cross the threshold” to plunge the world into terrifying new weapons unique in their capabilities to do harm to other space vehicles or Earth targets. It is this proposition that is being analyzed here. Note also that there are likewise some military and other analysts who routinely use “weaponization of space” in the future tense, which suggests they are thinking a very narrow definition of a “weapon” as a device that can physically and directly attack someone else’s assets or personnel. This discussion argues (1) that the use of this narrow definition of space weaponization is too restrictive and (2) that a more inclusive definition is needed in order to assess properly the assertion that missile defense will drive a decision to weaponize space.
ers but excluding aircraft carriers, which became the capital ships used by Japan to attack Pearl Harbor.

The medium of space is infinite in which is housed everything known so far to man. Within it reigns the cosmos (or under the quantum theory, chaos), generally speaking an unfriendly place for unprotected living creatures.

It is thus extremely difficult to seek ways to control weaponization through regimes, agreements, and treaties. In space everything moves, so that there are no fixed boundaries, save what could be staked out on celestial bodies, like the moon, which also moves. Thus, verification and enforcement of treaty conditions is highly complex at best. This reality dictates the imperative that the United States must exercise the greatest care in any discussions or actions relative to another space treaty, for the question arises, who will control whom and what and how?

Using Webster’s criteria, space has been weaponized since 1944, when the V-2, the first ballistic missile, was launched by Nazi Germany against targets in southern England. Space was the necessary medium through which the V-2 had to travel to strike its earthly target hundreds of kilometers away. The first orbiting object, Sputnik (1957), could be classified, at minimum, as a potential weapon, capable of relaying data back to military command posts, which it doubtlessly did.

Since then, space has become a very busy place for civilian and military alike. Anyone with a cell phone or a global positioning system (GPS) unit or access to the internet knows this, as does anyone who watches the news. Most particularly, U.S. troops with “boots on the ground” and combat pilots with their smart bombs and cruise missiles know. The commingling of orbiting technology has become virtually seamless as a centralizing constant in our lives, ci
dian and military alike. Anyone with a cell phone or a glob

So, the problem of identifying space weaponization in terms of just exactly where and under what conditions it exists is highly complex, particularly as to how space weaponization can be defined in terms of international or space law. In this regard, Robert A. Ramey, who has been chief of space and international law at the U.S. Air Force Space Command, writes:

[The] basic term space weapon lacks definition in international law. As a result, the concept it represents, which broadly speaking includes any implementations of warfare in space, is difficult to isolate. Without this foundational definition, one cannot define phrases on which it might rely. The difficulty comes into particular focus by observing that any comprehensive definition of space weapons will include space systems equally used for nonmilitary, nondestructive, and nonaggressive purposes. Though space weapons may seem to include only a discrete class of armaments with easily definable characteristics, a closer examination “reveals a less obvious and more inclusive set of systems.”

Ramey then goes on to quote Bhupendra Jasani, an authority on legal space issues, as offering one proposed definition of space weapon that “illustrates the challenge:”

A space weapon is a device stationed in outer space (including the moon and other celestial bodies) or in the earth environment designed to destroy, damage, or otherwise interfere with the normal functioning of an object or being in outer space, or a device stationed in outer space designed to destroy, damage, or otherwise interfere with the normal functioning of an object or being in the earth environment. Any other device with the inherent capability to be used as defined above will be considered as a space weapon.

Based on these observations and definitions, the proposition that spaced-based missile defense will drive a deci
tion to weaponize space is a false assertion that should be rejected in any serious discussion about how such a system will affect the weaponization of space.

Rather, the proper question is, How will (or should) something – including missile defense – further weaponize space beyond the current space environment? Thus, the dynamics of discussion shift from suggestions of a dire new, first-ever “doomsday close upon us,” with all that implies, to one that addresses with careful analysis an already existing condition that would be altered by another orbiting device.

This is easier said than done. Because many of those who express concern that the United States might unilaterally precipitate an unnecessary international crisis by being the “first to weaponize space” appear reluctant to address such a question. To acknowledge that space already is weaponized understandably weakens their arguments that the United States should not be the first in space with such “armaments.” It further blunts their arguments against space-based missile defense. Hence, a narrow, arbitrarily defined concept suits their arguments best.

For example, William L. Spacy II, writing as a career Air Force officer in 2003, states:

Space-based weapons have been proposed for ballistic missile defense (BMD), space control, and attacking terrestrial targets... To narrow the discussion to the most contentious issues, this paper considers space-based weapons to be only those systems for which the destructive component resides in orbit. Systems that rely on space-based assets for information collection, weapon cueing and guidance, as well as weapons that only transit space on the way to their target, are not considered to be space-based weapons. 21

By setting the space weaponization “counter” to zero (eliminating existing space assets from the weaponization calculus) a heightened sense of crisis emerges driven by three thoughts: (1) “weaponization of space” must be prevented; (2) if the United States “sets the standard” by not “weaponizing space first,” no one else will; but (3) if the United States proceeds, an arms race will ensue. Since space-based missile defense would be one such weapon, its deployment will cause an arms race; thus, to maintain “stability” space-based missile defense must be banned.

These were essentially the same arguments used in the sixties that missile defense would cause an arms race and that the ABM Treaty was needed to prevent this.

Spacy appears to share many of these views, although in a somewhat ambivalent manner:

Space has long been treated as something of a sanctuary and kept free of weapons... (Today, because of our increasing reliance on space-based assets to provide enabling information to the military) a space sanctuary strategy may benefit the United States now more than ever... Boost-phase ballistic missile defense, using either lasers or KE [kinetic energy] weapons, is the one area where orbital weapons appear to be the only alternative; however these weapons do not appear to be practical. Even if an effective system could be created; doing so could prompt adversaries to re-direct their weapons development into other areas (away from effective ballistic missiles)... The question becomes whether or not removing ballistic missiles as a viable option for potential adversaries is worth the extremely high cost of an orbital defensive system. It is entirely possible that a ground-based BMD system would provide enough of a disincentive without space-based weapons. If we need a defense against ballistic missiles, then it makes more sense to put the sensors in space and keep the weapons on the ground. 22

What Spacy apparently is saying is that we do not need to worry about boost-phase missile defense; that ground-based systems, which cannot be effectively used for this purpose, nevertheless will provide enough of a “disincentive” to protect the U.S. population from a strike from somewhere.

This assumption – that if the United States does not weaponizespace no one else is likely to do so – is widely used in varying configurations. A representative example is recent work by co-authors Bruce M. DeBlois, Richard L. Garwin, R. Scott Kemp, and Jeremy C. Marwell. The far-ranging analysis, entitled “Space Weapons,” gives its purpose as examining “the possible roles for space weapons in addition to missile defense – for protecting satellites, controlling space, and projecting force – in terms of capabilities and cost.” 23

Note that population protection is not mentioned.

However, the authors do offer these asides in both their introduction and conclusions:

At the same time (as the utility and inherent political risks of space weapons are being evaluated), the United States should seriously consider the gains to national security to be found in an international regime banning space weapons and should work to encourage other states to join a regime opposing the deployment of space weapons, although

22 Ibid., 163-65.
the details of such considerations are beyond the scope of this article... An aggressive campaign to prevent the deployment of weapons by other nations might best be implemented as a U.S. commitment not to be the first to deploy or test space weapons or to further test destructive antisatellite weapons. A unilateral U.S. declaration should be supported by a U.S. initiative to codify such a rule, first by parallel unilateral declarations and then perhaps a formal treaty. A treaty would have the added benefit of legitimizing the use of sanctions or force against actions that would imperil the satellites of any state.24

So what, then, are the primary dangers that drive certain members of the arms control community and their allies in seeking, with a sense of urgency, to ban the “weaponization of space”? Leaving aside that space already is weaponized by generally accepted definitions, their question really becomes, what are the specific threats inherent in the further weaponization of space?

Since the 1967 Outer Space Treaty already prohibits weapons of mass destruction (nuclear, chemical, and biological) either in orbit or celestial-based, the potential for so arming vehicles and objects, such as space shuttles and space stations, does not appear to be of immediate concern. The belief is that the treaty will continue to be honored by the nearly 100 signatory countries.25 Thus, the unleashing of WMDs from space currently is not deemed a threat.

Rather, the specific threats, as perceived by space-weapons-ban proponents, boil down to just two main possibilities involving non-nuclear devices, principally using either kinetic energy or lasers in offensive, direct-attack modes: (1) space-to-Earth weapons designed to strike terrestrial targets and (2) space-to-space weapons designed to attack hostile satellites, that is, anti-satellite weapons (ASATs), to protect U.S. satellites, so as to maintain “space control.”

Space-to-Earth weapons would strike targets, such as military force-projection missions (such as bunkers in Iraq or a surgical strike on an unsanctioned nuclear processing installation).

One kinetic weapon examined is the “long-rod penetrator,” long tungsten or uranium rods falling vertically from orbit at 460-kilometer-altitude to penetrate ground targets to a depth approximate to their length, creating the effect of a conventional explosion. Dubbed by some as “rods from God,” the concept has been generally rejected – spears having been similarly rejected as the weapon of choice some time ago.

The other is a space-based laser to strike Earth targets with precision accuracy. However, the currently evolving airborne laser could likely perform essentially the same function, and, of course, there are several other non-space alternatives already developed and used, such as cruise missiles, “smart” bombs, “bunker busters,” and artillery. Other future non-space possibilities include potential use of guided non-nuclear intercontinental ballistic missiles (ICBMs) or submarine-launched intermediate-range ballistic missiles (SLIRBMs).

In sum, there is little by way of uniqueness (in doing something nothing else can) in developing kinetic or laser space-to-Earth weapons, where there already are non-space weapons to do the job. Here, even proponents for a new space treaty acknowledge this; indeed, some go to great lengths to point this out.26

That leaves essentially only one serious area where further weaponization of space has yet to occur, and that involves protecting U.S. satellites from attack by ASATs – and, on the flip side, worry by other powers and anti-Americans that the United States as an aggressor might develop its own ASATs not only to protect its own but to attack other satellites, not an attractive possibility to pacifists and arms-control extremists. Such space weapons by and large would be lasers and possibly kinetic energy devices where the function – at least from the U.S. perspective – is to exercise “space control.”

Therefore, the cosmic issue of creating a new space treaty or other regime to ban the “weaponization of space” – so urgently called for by so many in the arms control community – actually is reduced primarily to a single issue, that of seeking international control over the use of space-based ASATs belonging to the United States and presumably other countries, that also by implication links to space-based missile defense. This is not quite the same cosmic issue as one seeking to ban all space weapons because they have the unique capability to do harm in ways no other weapons can.

Usually, treaties or regimes concern something that is unique and of critical importance, such as the UN Charter (which altered geopolitics), the 1967 Outer Space Treaty (which banned orbiting weapons of mass destruction), and the ABM Treaty (which outlawed missile defense for populations).

But even here, the uniqueness of banning a non-nuclear, space-based anti-satellite weapon is not as dire as this sense of urgency for a new treaty suggests – for the very good

24 Ibid., 51, 84.
25 See Turner, “Campaign to ‘De-Weaponize’ Space.”
26 DeBlois et al., “Space Weapons,” 67-74. The discussion here focuses particularly on space-to-Earth points noted above, stating, on page 73, that “Even [space-basing] enthusiasts admit that space-based lasers would be a specialist, ‘leading-edge’ tool for attacking a narrow class of targets. They would not replace conventional military means.”
reason that if someone wants to “take out” an enemy satellite, they can do it already, using existing or near-to-development terrestrial-based or airborne means.

These include jamming satellite signals, physical attacks on satellite ground stations, dazzling or blinding sensors, ground-fired hit-to-kill missiles, high-altitude nuclear explosions, and, in the not-too-distant future, pellet-cloud attacks, and multisatellite space attacks (see discussion in section 1 about the China-Surrey microsatellite projects).

Here again, proponents for a new space treaty acknowledge this. They also point out in at least one extended discussion that “the development of space weapons would not significantly mitigate” many of the above threats. Rather, technologies such as radiation hardening and shielding of U.S. satellites, command and data encryption, limited orbital maneuvering, and anti-jamming measures would be preferred. Also, destroying ground-based enemy ASAT laser sites could better be accomplished by conventional weapons. And while not rejecting space-based lasers to defend U.S. satellites, they take the view that the “cost and limited effectiveness of a weapon-based satellite defense must be weighed against those alternative approaches… (which are) preferable to a weapons-based solution with a known low probability of success.”

It is here that many new-space-treaty proponents find themselves in a muddle. On the one hand, they devote much effort to establish that the United States can maintain its global military force projection capabilities without “weaponizing space,” without “resorting” to space-to-Earth weapons, and, similarly, to point out that the United States can maintain adequate space control to protect its satellites also by using non-space assets, rather than “crossing the line” to develop space-to-space weapons.

On the other hand, these proponents move seamlessly into firm declarations that it is imperative that the United States unilaterally declare its “commitment not to be the first to deploy or test space weapons” and also should take the “initiative” leading “perhaps to a formal treaty.”

In other words, with a new space treaty the United States would be practicing an advanced version of “unilateral disarmament” that was used as the centerpiece for the nuclear disarmament arguments of the 1950s-60s, that is, if the United States disarms itself, the Soviet Union will surely follow — the argument that led ultimately to the MAD doctrine of hostage holding and the subsequent ABM Treaty, which, of course, did not prevent a huge nuclear arms race. A new space treaty would become an advanced version in that it would be unilateral disarmament before the fact, not even progressing to a point where there would be something to disarm.

The ramifications of this new application of unilateralism are staggering, for they would preclude the United States from making full use of its science and technology to stay on the cutting edge of space development of both offensive and defensive means to protect current and future space assets, as well as the American people. It would leave the way open to be perpetually vulnerable to the weapons that other nations might develop in the absence of any conceivable viable means of treaty enforcement that would serve U.S. vital interests (discussed elsewhere in this report). As Portugal and later Spain both lost dominance of the seas during the middle of the last millennium, so would the United States be edged out of any leadership role in space development.

The muddle occurs because new-space-treaty proponents do not make the case of uniqueness much of anywhere in the foregoing discussion that would call for a new space treaty at this time, thus obfuscating the reasons why such a new regime is presumably so necessary.

After all, even with a new space treaty, U.S. satellites — or anyone else’s — initially would not be made necessarily more secure. Similarly, a new space treaty, some proponents agree, would not at this time blunt U.S. global power-projection capabilities, even with space-to-Earth weapons (the United States would simply use other existing terrestrial and airborne assets). And there is general agreement that the 1967 Outer Space Treaty is already effective in banning weapons of mass destruction.

So why a new space treaty?

At least two reasons present themselves. The first is that were the United States unilaterally to eschew “weaponization of space,” the longstanding quest of pacifists and arms control devotees would in part be realized: The United States by standing aside would thus inspire and motivate other nations to do likewise so as to achieve space peace in our time, while doing what is best for America.

This certainly would be unique but new-space-treaty proponents do not beat that drum too loudly, because the uniqueness would be in the permanent codification of U.S. unilateral disarmament before the fact — a first in American history. It is not a subject most Americans would warm to. So the matter is approached with somewhat softer edges than reality demands in assessing this fundamental change in defense doctrine.

One of the more measured approaches is expressed by Michael O’Hanlon, writing as a senior fellow at the Brook-
ings Institution, who stresses voluntary unilateral restraint as a prelude to any new space treaty, but the effect is still the same: holding back until a threat is imminent, which O’Hanlon presumably does not see as being near term:

By racing to develop its own space weapons, the United States would cause two unfortunate sets of consequences. Militarily, it would legitimate a faster space arms race than is otherwise likely – something that can only hurt a country that effectively monopolizes military space activities today. Second, it would reinforce the current prevalent image of a unilateralist United States too quick to reach for the gun and impervious to the stated will of other countries (as reflected in the huge majority votes at the United Nations in favor of negotiating bans on space weaponry)... By the same token, the categorical opposition to space weapons... is too optimistic... So a moderate and nuanced policy, rather than an absolutist or ideological one, is the right path ahead for the country... But any U.S. policy to pursue the actual weaponization of space in the near term would be a mistake... military space competition will occur regardless of American policy... Certain [non-space] missile defense systems, together with laboratory research [is adequate for the moment but] no dedicated ASAT programs are needed or desirable. [Note: In this essay, space-based missile defense is treated as a latent ASAT.]

There is a second, more compelling reason that is highly time sensitive and therefore urgent: a new space treaty is needed to keep the United States – and other nations if one wanted to be ecumenically fair – permanently MAD-compliant in its security and geopolitical behavior toward most of the international community, particularly toward Russia and China.

It is this MAD-compliant element that would make a new space treaty genuinely unique, which is to prevent the development and deployment of a space-based device that no other defensive weapon or system could do on a coherent global basis – a device that could strike down a ballistic missile in its boost phase or early trajectory from virtually anywhere in the world. It is space-based missile defense.

A new space treaty would replace the now-defunct ABM Treaty, if not to ban missile defense generally, then at least to ban missile defense where it counts the most: to preserve much of the existing nuclear powers’ first-strike capabilities without a “defensive threat” against them, theoretically relying on retaliation by the United States to deter a nuclear attack; hence, the recodification of the doctrine of Mutual Assured Destruction and its key tenet, population hostage holding.

Here again, proponents do not beat that drum too loudly. The subject of population vulnerability as the best means to protect that very same population by denying them effective missile defense is no more popular today than it was 40 years ago. Indeed, their use of the term “missile defense” most of the time these days is referred to as simply a self-explanatory object that requires no real definition and no discussion of consequence as to its need and purpose.

Rather, missile defense is regarded by most new-space-treaty proponents as just one more component in the complex and extremely broad spectrum of strategic arms and their delivery systems, a component of dubious value in the near term and perhaps of some value in the distant future – but in any event destabilizing to the grand scheme of things. With this collective mindset, then, missile defense therefore has been and still continues as a kind of pawn on some huge arms control chessboard that can be easily bargained away as it was in the 1970s.

Yet, few if any of these proponents say they are “against” missile defense. They merely argue its irrelevance in terms of being technically unsound and thus wasteful and ineffective and “destabilizing” – always “destabilizing.” What is never addressed is the paradox of this mantra: if missile defense will not work, how is it destabilizing?

The persuasive evidence points the other way: space already is weaponized; therefore, missile defense will not drive the weaponization of space; it will defend space and Earth itself from hostile missiles; it will save lives, not take them; it will help stabilize, not destabilize.

Missile Defense Will Give America Too Much Unilateral Power

As discussed earlier in several places, defending one’s self, as with a nation defending its people, is a natural right, so long as it does not encroach on the peaceful pursuits of others. To argue otherwise, that this natural right of defense gives someone “too much power,” is one of the oldest art forms in which one nation seeks to lure another into complacency...

cy – one of the more dramatic examples being the destruction of Carthage by Cato’s Rome.

This reality should be self-evident: a would-be aggressor state will object to another nation’s wanting to defend itself for nonbelligerent reasons mainly because it could impede whatever designs the aggressor may have regarding the other nation. Those nations who wish America no harm will not object to its missile defenses. Those nations and their sympathizers who would like to marginalize the United States will indeed object.

The “too much power” in this case is fairly transparent. Certain nations, such as Russia and China, have invested huge sums in their offensive nuclear programs (strategic forces) and other emerging nuclear powers, and “wannabe” rogue states are making similar investments.

If the United States (or any other nation) deploys an effective, layered global missile defense system with space-based interceptors as the unifying element (see figure 4.1), it throws into question the functional integrity of any other nation’s first-strike capability and thereby raises the risk of mission failure and also the loss of credibility that any would-be aggressor must have to carry out its agenda effectively for political intimidation.35

It is understandable that emerging powers such as Russia and China (and some other states) are uneasy that the United States “just might pull it off,” so that any political means to slow U.S. progress in space, particularly missile defense, has its own logic – even as both of these nations proceed with offensive nuclear missile buildups and their own ASAT programs without apology, matters reviewed elsewhere in this report.

The following observation reflects this concern:

China and Russia long have been worried about possible U.S. breakout on space-based weaponry. Officials from both countries have expressed concern that the U.S. missile defense program is aimed not at what Moscow and Beijing see as a non-credible threat from rogue-nation ballistic missiles, but rather at launching a long-term U.S. effort to dominate space.34

More obscure to grasp, however, is what drives others – arms control extremists, pacifists, realpolitik practitioners, anti-Americanists – to protest so strongly about incorporating effective missile defense systems into the general mix of the global military environment that is ever-present.

One reason, at least, is based on the fundamental pacifist argument that defensive weapons breed arms races and that – particularly in the nuclear age – “stability” is achieved by negotiating, through the political powers and wisdom of arms controllers, a “balance of terror” of carefully proscribed offensive weapons in which no one nation has too much power over the others. In other words, it is the continuation of the doctrine of Mutual Assured Destruction, updated to include space and the twenty-first century.

Based on this view, space-based missile defense gives the United States too much power, because its vulnerability to the offensive nuclear weapons of other states or terrorist groups would be reduced significantly. Rather, it and other nations must remain vulnerable; otherwise, how are the major powers, particularly America, to be kept in line?

A March 2005 newspaper article describing a report on Pentagon space doctrine and a recent Geneva arms control conference makes a useful reference to this view about U.S. power:

Arms control advocates in the United States and abroad are expressing concern with the Bush administration’s push for military superiority in space... Michael Krepon, president emeritus of the Henry L. Stimson Center and an arms control official in the Clinton administration, said the United States is moving toward a national space doctrine that is “preemptive and proactive”… Krepon said (at the Geneva conference) a new treaty is needed because “if the U.S. proceeds to weaponize space, anyone can compete, and that makes sure everyone loses.”35

If there are some in this world who want to limit U.S. power, then do it through honest, forthright competition in responsible self-government and economic and social advancement to earn the merits of leadership among the nations – but do not ask Americans, or any other people, to give up their right to defend themselves as the means for others to declare victory over their ways.

Missile Defense Is Morally Wrong

Ever since the beginning of the nuclear age, the belief has persisted among some that a defense against nuclear missile attack is “morally wrong.” Its genesis came with the grim aftermath of the atomic destruction of Hiroshima and Nagasaki, in which the United States was roundly criticized from several different quarters, most particularly from elements of the religious community.

In the spring of 1996 during political elections in Taiwan, the People’s Republic of China threatened to use nuclear weapons against Los Angeles if the United States “interfered” with China’s “internal affairs.”

33 In the spring of 1996 during political elections in Taiwan, the People’s Republic of China threatened to use nuclear weapons against Los Angeles if the United States “interfered” with China’s “internal affairs.”

The fact that both the Soviet Union and, more particularly, Nazi Germany, were well on the way to developing their own atomic weapons was quickly dismissed as “irrelevant” by many ardant pacifists and others with related interests. That Germany was on the verge of producing the Bomb to end World War II in its favor was of little significance, since it was the United States alone that unleashed this new scourge upon mankind and thus was held to be morally irresponsible.

As discussed earlier, the theme that the United States must be prevented from ever “doing so again” was a dominant factor in the rise of the nuclear disarmament movement, in part fostered by the Soviet-sponsored World Peace Council, and the campaign for unilateral disarmament – all of which gave way to continued Soviet nuclear buildups and the doctrine of Mutual Assured Destruction, resulting finally in the 1972 ABM Treaty.

During the 1950s, the first direct application of the immorality of nuclear self-defense came with U.S. civil defense programs practiced then, in which, among other things, Americans were drilled in schools, homes, and offices to “take cover” in the event of an atomic attack. They were also instructed as to how to survive for up to a month in fallout shelters (until radiation, which has a half-life, would expend itself to safe levels).

It was the shelter program that certain church leaders and other “moralists” seized upon. It was a version of the old “lifeboat dilemma.” What happens if there is no room in the lifeboat for everyone, do you take everyone aboard until it sinks with everyone lost, or do you sacrifice the lives of those whom the boat cannot carry, in order to save the lives of the rest?

In this case, the anti-shelter moralists’ message was: if the shelter program could not protect everyone, better that all perish. The program, which was never popular (who wants to dig up their backyard?), atrophied, but the arms control debates continued to carry with them the subtext that missile defense is morally wrong, because it is an act of aggression that builds tensions and thus is provocative. The “solution” was to get rid of all nuclear weapons, which was a view pushed particularly by a number of prominent religious leaders and church bodies. This leadership was vague as to how this was to happen (as it still is).

With the advent of MAD and the ABM Treaty, the moral issue largely became moot until the 1980s when it looked as if missile defense was back again. Bishops of the Catholic Church once more raised the issue that the answer was not missile defense but nuclear disarmament.

The morality pot bubbled along with varying intensity until the spring of 2001, when bishops of the United Methodist Church, meeting in Arizona as the church’s top legislative body and involving representatives from the United States, Africa, Europe, and the Philippines, authorized the following statement (in part):

United Methodist bishops are calling upon President Bush and the U.S. Congress to refrain from development and deployment of a national missile defense system, which they call “illusionary, unnecessary, wasteful”... In their resolution, the bishops are adamant about the defense system but commend Bush for his commitment “to persuade Russia to join the United States in reducing arsenals to the lowest number of nuclear weapons consistent with our... national security needs and to lead by example by making substantial unilateral reductions if necessary”... Each bishop is asked to work with leadership in his or her respective area and with United Methodist and ecumenical groups to “resist development and deployment of the defense system.”

This view would strike many as a profound testimony to the serenity and unwavering faith of these members of the clergy: namely, that by the United States foregoing such defense, would-be aggressors against the United States will depart in peace. Since the tragedy of September 11, 2001, however, when some would-be aggressors did not depart in peace, church groups and other “moralists” have moved on to other matters but likely will return to this issue as the missile defense debate continues.

Missile defense today remains a moral issue for some but it is seldom invoked as a mainstay in serious discussion. Indeed, it never has been. Except for the specific arguments concerning fallout shelters, it has been treated as a kind of appendage in the continuing debates on moral issues governing just wars, unjust wars, social justice, and the like.

Thus, there has been no serious challenge to or definition of the idea that missile defense is morally wrong. When it is referred to, it is usually as an aside, a flat pronouncement made without elaboration or explanation – just there, as everyone-knows reflex in the rhetoric that still remains as part of the MAD culture.

One of the more recent examples of unexplained reference to the immorality of missile defense comes from William Spacy. In his discussion on how missile defense might be decentralized, he accurately quotes Dr. Lowell Wood’s description of Brilliant Pebbles as each having its self-con-

tained ability to respond swiftly, so that it could perform its purely defensive mission with no external supervision or coaching. Spacy then goes on to say, “Aside from the moral reluctance of many to give any weapon so much autonomy, a major problem with this concept is to devise a computer/software combination small, cheap and smart enough to do the job.”

Here, Spacy seems to have himself, or recognizes in others, a moral problem with a weapon “smart enough” to respond to a hostile missile attack quickly enough to shoot it down to save lives – this without “reporting” to anyone in advance before taking what in effect is a real-time defensive response. Further, he does not elaborate. He simply notes “moral reluctance” as an aside, as a “given” requiring no further explanation and moves on.

Yet, this point is important to any serious discussion about missile defense. Near-real-time responses are critical if a layered system is to work; so that if there is a moral problem, then it should be examined in detail. And in this particular matter Spacy is comparing apples to oranges by applying a set of concerns about one kind of weapon to another kind of weapon with a different function and mission.

First, nuclear weapons designers properly have long been concerned about how much of a “hair trigger” should be incorporated into missile firing and command/control systems. Too much automation without fail-safe supervision could lead to accidental or unauthorized launches, where megaton-size nuclear missiles could be sent screaming down upon millions of people with little warning – a nuclear Armageddon.

Hence, the use of complex firing codes and “black boxes” and “footballs” that most heads of nuclear-power nations (certainly the United States) always carry with them to guard against such an event. But these are offensive nuclear weapons, ones calculated to destroy lives and property. These are the apples.

The oranges are different. They would be space-based interceptors, defensive weapons, designed to save lives and property. They would be small and compact defensive weapons, in this case Brilliant Pebbles (BP), that would use not explosives but their own body weight to provide kinetic energy. This would occur when the device (pebble) first “sees” the hostile nuclear weapon as it is launched, and locks on to the ascending missile. The device, powered by a mini-rocket, would streak down or out or up to strike the missile (like a large pebble) and knock it out of commission.

Obviously, seconds count, because once the pebble “sees” the missile firing, it must respond instantly or it is too late and the hostile missile is well on its way to its target. The problem of accidental activation, however, would be virtually eliminated, because the autonomous system – like cruise control on an automobile – would be designed to be switched off as the BPs pass over friendly or non-hostile territory and turned on again over potentially hostile territory and programmed to do so automatically. A reasonable comparison is the average home security system, which must be real-time automated, to activate its alarms the second an unwanted intruder shows up, so that law enforcement can respond effectively. Obviously, a prudent owner will turn off the alarm when moving about the premises or when expecting guests, but otherwise the owner wants the system armed to be able to respond quickly when needed.

An automated SBI, whether kinetic, like BPs, or laser energy, would have the same quick-response capability, otherwise its function would be reduced to that of an early-warning radar and would be unable to make an interception. In this context, it is difficult to find the same kind of moral dilemma with Brilliant Pebbles or other SBI as one associates with a fully automated offensive nuclear strike weapon.

If the morality of missile defense is to be questioned, then the entire proposition must be put on the table. The entire proposition, in fact, is, if missile defense is morally wrong, it follows that it is morally right for government not to provide missile defense.

This, then, raises another dimension of the question posed by Ronald C. Tocci, which “moralists” opposing an effective missile defense system must answer forthrightly, completely and convincingly, if they are to preserve their credibility: is it a moral act for the government of the United States deliberately to hold its own population hostage

38 Further, even if a BP “got away” to “run wild,” it would quickly burn up in the atmosphere. And in the case of an accidental shoot-down involving the mistaken identity of someone’s “innocent” missile (such as one carrying a communications satellite), Brilliant Pebbles and other SBIs would fall under the same protocols and international notification procedures that have long governed an unwarranted response by offensive nuclear weapons against another nation: when a country plans to launch a nonthreatening rocket – such as for a weather or communications satellite or to ferry astronauts and supplies to the international space station or the moon or to send robots to Mars or to orbit telescopes – those powers possessing offensive nuclear weapons are notified well in advance, so as to avoid a terrible misunderstanding that could trigger a massive retaliatory nuclear strike against the country of origin. Brilliant Pebbles and other SBIs would fall under the same protocol of advance notification and, of course, their automated systems would be switched off, even as offensive nuclear weapons would be taken off hair-trigger alert and ordered to “stand down.”
Summary Conclusions

Sections 4 and 5 have looked at much of the history, politics, facts, realities, and myths that have made up the saga of missile defense for more than 40 years, as nations after nation has built and continues to build nuclear armaments that can be used against Americans and people of other countries.

There are three inescapable conclusions.

The first is that there has never been anything in America’s military history to compare with the political efforts that have been made by the government of the United States over this 40-year period to forestall the process of defending its population from a known threat from the offensive weapons of another state, and while some progress has been made since the ABM Treaty withdrawal, this reluctance continues as a political drag on the whole missile defense effort, particularly the deployment of space-based interceptors.

The second summary conclusion is that time is not on America’s side. Immediacy, too often, is deemed not especially important, given all the other make-or-break things going on. After all, the reasoning goes, the United States has survived these many years without missile defense, so what are a few more months or years?

But there is one nagging detail that is not easily dismissed. In this emerging twenty-first century of dependency on electronic automation brought about through the high-tech age, it only takes one low-grade nuclear weapon and only one nation or terrorist group to act and America’s clocks literally stop. Whether a sophisticated or “homemade” missile, just one of these devices exploded 400 kilometers above, say, Columbus, Ohio, would change the life pattern of every living American – without regard to ethnic origins or political beliefs or religious views or age or economic status.

The explosion would not be noticed by most people. The lights would simply go out, elevators would stop, computers and air conditioners would fall silent. Not a brownout or a blackout but a burnout. Not for days but for months upon months and in some instances perhaps years.

The phenomenon, known as electromagnetic pulse, or EMP, is described in section 1. It is generated by the explosion of a nuclear weapon and is a consequence detected in the 1962 tests at Johnston Island in the Central Pacific and subsequently carefully examined through other tests by nuclear physicists off and on for years – particularly U.S. and Soviet/Russian scientists.

EMP is a subsidiary by-product of a nuclear detonation, the better-known and understood products being extreme blast damage and devastating radioactive fallout that are associated with low-altitude or ground-level detonations. While certainly of interest, it was not particularly central in the continuing calculus of Mutual Assured Destruction, where physical mass destruction was the factor in the “balance of terror.”

But in recent times, world dynamics have changed, and the relevance of EMP itself, with the capacity of burning out electronic devices of all sorts, has changed with it. This has given rise to an intriguing concept of using EMP as a standalone weapon, where blast damage and nuclear fallout do not really count; rather, to launch a low-yield nuclear missile to a selected high altitude (40 to 400 kilometers), detonate it, and then watch somebody’s lights go out. It is also eminently doable at relatively low cost requiring fairly uncomplicated logistics, as compared with other, more sophisticated efforts in the world of nuclear weapons. One will do the trick for most large countries or regions, although three or four backups likely would be used, since they would be not too difficult to rig (as was demonstrated in the 9/11 attack).

There are two basic reasons why an EMP attack would be a highly effective means to mount an attack that could be devastating against an electronically sophisticated nation, such as the United States.

The first is the growing value of asymmetrical warfare, in which one country attacks the vulnerabilities of another to level the playing field or to try to defeat it. 39 As the 2004 commission report on EMP states:

Several potential adversaries have or can acquire the capability to attack the United States with a high-altitude nuclear weapon-generated electromagnetic pulse (EMP)... one of a small number of threats that can hold our society at risk of catastrophic consequences... It has the capability to produce significant damage to critical infrastructures and thus to the very fabric of US society... Our vulnerability is increasing daily as our use of and dependence on electronics contin-

39 British Singapore fell in February 1942, because “the guns of Singapore” were pointed seaward to forestall a naval attack. The Japanese army of 200,000 slithered through the dense Malayan jungle to attack from the land side. The French boasted the impenetrable Maginot line, impervious to the German tanks. Hitler agreed and sent his panzers and infantry through Belgium and the forested Ardennes to drive across the Meuse into northern France, thus flanking the Maginot to make it essentially useless. The Trojan horse which was presented by the Greeks as a peace offering to Helen of Troy probably is the most classic example of asymmetrical warfare. The vulnerabilities of electronic infrastructures to EMP present another, simpler means to wage such warfare. However, this vulnerability can be corrected and is well within America’s means to do so – if it so chooses.
ues to grow. The impact of EMP is asymmetric in relation to potential protagonists who are not as dependent on modern electronics.40

The second reason concerns existing protagonists who have already declared their extreme hatred of the American people, in particular, and disdain toward Western civilization and its friends in general. We know them principally through the War on Terrorism and we know of their affinity for the violent dispensation of death. They are not very dependent on modern electronics for quality of life but make clandestine use of computers, cell phones, and electronic detonation to destroy the quality of life for others.

As their fortunes worsen – and the indications point in that direction – they are very likely to become desperate in their search to regain their footing and momentum; so that the possibility of mounting an EMP attack most surely has entered their minds, as some intelligence sources indicate, and, from their perspective, the sooner the better, for time is not on their side.

What better way to strike two blows at once than by putting “the Great Satan’s lights out” – to deal a terrible blow both to Americanism and to electronic modernism in one grand, mother-of-all feat.

Such a feat could involve a ballistic missile fitted with even a low-yield nuclear warhead, timed to detonate over the target at, for example, an altitude of 400 kilometers. It could be launched via a long-range missile from land or one of shorter range – even a Scud – from the deck of a freighter.

The EMP effect occurs when the resulting gamma rays “interact with the atmosphere to produce a radio-frequency wave of unique, spatially varying intensity that covers everything within line-of-sight of the explosion’s center point.” The EMP commission’s report selected a point above Columbus, Ohio, to demonstrate its scenario. The exposure radius would be about 1,600 kilometers, reaching east well past New York City and Washington, south to Miami, over to Dallas–Houston, westward past Omaha, and northward running from Winnipeg to Quebec.41

The consequences of such an event would be grim. Seventy percent of the total electrical power load of the nation is within this radius. The EMP impact would be virtually instantaneous over the region. It would produce three electromagnetic pulses, each microseconds apart with a cumulative effect of instant burnout in spots that then “cascades” into successive failures in equipment and systems that are dependent on electricity.

Thus, electric power and their grids fail; telecommunications and computers go, along with banking and other financial systems; pumps to run gas stations and lift water from wells and rivers quit; virtually all transportation stops; avionics and navigation systems cease; frozen foods rot; heart-lung machines die, and on and on. It is not a condition that gets fixed quickly, since equipment and components first must be replaced or repaired, which obviously takes considerable time.

Three factors govern the seriousness of the threat: capability, opportunity, and probability. In terms of capability and opportunity, the EMP commission’s report summarizes:

What is different now is that some potential sources of EMP threats are difficult to deter – they can be terrorist groups that have no state identity, have only one or a few weapons, and are motivated to attack the US without regard for their own safety. Rogue states, such as North Korea and Iran, may also be developing the capability to pose an EMP threat to the United States, and may also be unpredictable and difficult to deter... China and Russia have considered limited nuclear attack options that, unlike their Cold War plans, employ EMP as the primary or sole means of attack. Indeed, as recently as May 1999, during the NATO bombing of the former Yugoslavia, high-ranking members of the Russian Duma, meeting with a US congressional delegation to discuss the Balkans conflict, raised the specter of a Russian EMP attack that would paralyze the United States.42

There are a number of indicators that both the capability to develop low-yield nuclear weapons suitable for an EMP attack and the opportunity to deliver them are expanding beyond the major nuclear-weapon powers. Intelligence, security policy and news sources have revealed several developments.

North Korea, reportedly, is moving toward deployment of new land- and sea-based ballistic missiles that can carry nuclear warheads, with the sea-based missile potentially more threatening.43 Also, North Korea may be developing a miniature nuclear warhead to arm a type of missile that could reach the United States.44

41 Ibid., see discussion and figures 2 and 3, 4-6.
As noted in section 1, Iran appears to be actively pursuing a nuclear weapon capability to go with its evolving missile arsenal. And Chinese, Iranian, North Korean navies, and possibly others, are developing small, silent diesel-powered submarines that either are or will be able to operate and strike in shallow coastal waters. The probability of an EMP attack is determined in significant part by whether the capability and opportunity can be thwarted, if not outright, then by clearly providing evidence in advance of an attack that effective intervention would occur to cause mission failure or terrible post-attack consequences to the aggressor.

Currently, the probability of an EMP attack is at least as high as it was for anticipating the 9/11 attacks -- not very high to most minds. But they did occur, which means al-Qaeda had a different read on probability than did American leadership. Therefore, probability always should be firmly linked to capability, especially with known adversaries. As has been said: “If they can do it, assume that they will and defend accordingly.”

At the moment there are three options to deter an EMP attack. One is by diplomatic agreement, but for this particular situation, where rogue states and terrorist organizations are involved, this is impractical by any measurement.

Another is through intervention, of which there is currently only one means. It is a preemptive strike by U.S. forces against a known EMP attack site, which obviously should be utilized if circumstances clearly warrant. But it is still limited as a viable option, since a single-missile EMP strike preparation could be highly difficult to detect if it is a covert attack from land or anonymously from the sea.

The threat of massive retaliation is the other possible deterrent, which worked during the U.S./USSR “balance of terror.” Then, both had a stake in surviving to live another day in some compromise setting, a feeling presumably still shared by the major nuclear-weapon powers.

But would the threat of retaliation work with those rogue states and terrorist groups which have a much different set of incentives, where survival is second to hatred, and death either is noble or irrelevant to a higher cause? In this setting, retaliation might even be welcomed, in the belief that a crippled America in striking back might further earn the “condemnation” of the world, the very world it would be “begging for food and water to feed its starving people.”

Two more options are available – should America choose to exercise them. Both could effectively deter or thwart an EMP attack, especially if they were brought on stream simultaneously. Both are well within the nation’s means and resources to develop in a timely manner.

The first is to reduce significantly the vulnerabilities of America’s most critical infrastructure systems, either by “hardening” them or redesigning them away from the effects of EMP. There are two such “high-leverage systems” upon which all other electronic infrastructures and related critical functions are dependent: electric power and telecommunications.

Therefore, immediate steps must be taken both to prepare and protect these two systems, which under the best of circumstances would take at least three to five years to reduce their vulnerabilities below the level that would likely invite an EMP attack, so that:

By protecting key elements in each critical infrastructure and by preparing to recover essential services, the prospects for a terrorist or rogue state being able to achieve large-scale, long-term damage can be minimized. This can be accomplished reasonably and expeditiously.45

However, these measures would not guarantee in and of themselves that if an attack were to occur, there would be no damage. In all probability there would, but not catastrophic enough to plunge the nation back into the nineteenth century, so that the United States could recover and remain a major power.

But with the exercise of the second remaining option, the possibility of even this level of damage could be further reduced, and significantly so. And that, of course, would be to shoot down the EMP-strike missile in its boost or early-midcourse phase whether fired from land or sea.

While an Aegis cruiser with its anti-missile missiles might succeed in certain restricted situations, it would need to be on high alert and close enough to the launch site, so that it could respond seconds after the launch. The Sea of Japan, close in to North Korea, would be one such location, but to deter effectively, the ship would have to be on station there more or less permanently.

The more efficient way traces back to only one system that could be quickly deployed to do this: SBIs that could be on constant alert and could “see” a firing instantly and move to strike the missile before it could make it into its midcourse trajectory, where even if it were exploded there could harm orbiting communication satellites.

As discussed previously, the only SBI that could be quickly available at this time is something based probably on a new version of Brilliant Pebbles and according to some sources would be lighter, quicker, faster, and cheaper than the old-

er BP technology could have provided. As Taylor Dinerman writes in *The Space Review*:

"Since Brilliant Pebbles was canceled in 1993, the Department of Defense has made some limited progress on technology that is directly applicable to space-based boost phase systems. More important has been the ongoing improvements in computer processing power and in the ability of uncooked thermal imagers to detect targets. A 2005 model of a Brilliant Pebble would be smaller and have a better electronic brain than the 1993 one. Not only that, but there are now cheaper and more reliable in-space propulsion systems, such as pulsed plasma thrusters, which would keep the BPs in orbit and operation for far longer than the older version."

The probability of an EMP attack by a rogue state or terrorist group at this point in time is in all likelihood higher than a smaller attack by a more advanced nuclear-weapons powers. For instance, it is not currently envisioned that there would be any immediate advantages for either Russia or China to mount such an attack, though they might threaten one, as Russia did in 1999 over Yugoslavia and China did in 1996 over Taiwan.

The possibility of using SBIs for the EMP threat appears to have occurred within the U.S. government in 2005, which is encouraging news. The only rub is timeliness, if at all. It is difficult to posit that anyone contemplating an EMP strike against the United States would not be thinking in terms of launching it at the earliest possible moment, and given the already proliferated technology and means available, capability and opportunity grow by the day. Yet, as the American Foreign Policy Council’s “Missile Defense Briefing Report” stated in 2005:

"Inside the Pentagon (April 7) reports that the Bush administration is considering the deployment of a limited constellation of space-based kinetic energy interceptors to protect the United States, as well as American troops and allies abroad, from ballistic missile attack. Plans for such an initial capability, at the cost of some $673 million, are included in a set of Missile Defense Agency long-term budgetary assessments recently made public. The projections call for the deployment of a limited space-based interception capability aboard between 50 and 100 satellites to create a "thin boost/ascent defense against intercontinental range ballistic missiles." If funded by Congress, the initiative would commence space-based testing beginning in 2008, with an initial deployment of defenses to take place in 2016."

It is a stretch to suggest that anyone contemplating an EMP strike against America would not be prepared to do so before 2016. Therefore, the timeline for SBI deployments requires radical adjustment, if necessary on a crash basis similar to that of the Manhattan Project.

A third summary conclusion is that the consensus for missile defense is largely dysfunctional. It is not working as it should. Unless it is fixed, it is unlikely that the 70 percent or more of Americans who want missile defense will get it when they need it the most – which is today and tomorrow, not decades in the future.

Meanwhile, missile defense opponents continue their campaigns, both domestic and foreign, to keep the United States tied to a MAD-compliant policy, particularly as concerns space-based interceptors. Their continued dedication to this task should not be taken lightly, particularly among foreign sources with vested anti-American sentiments. A May 1, 2005, statement from the Communist Party of Canada reflects this sentiment:

"Dear Comrades: On behalf of The Central Committee and Central Executive Committee of the Communist Party of Canada we greet you and salute you on the occasion of the 19th Congress of your Party, the Communist Party of India (Marxist)... We, as all communists, are very concerned with the deteriorating international situation and the increasing danger of the escalation of Imperialist violence led by the major Imperialist power the United States of America.... The Communist Party of Canada believes that the danger of war is increasing which adds a heightened importance of the forces for peace in the world of which the Communist Parties are a part of... We have been working very hard in Canada as an important part of the forces rebuilding a mass anti-imperialist peace movement. So far there have been some significant victories. Just last month the minority liberal government was forced by public pressure to withdraw from the Ballistic Missile Defense plan of the Bush government. This was widely celebrated recently by Canadians as a part of the Global Day of Action..."

where tens of thousands of Canadians participated in over 45 communities in our Country.\footnote{People’s Democracy, May 1, 2005, \url{http://pd.cpim.org/2005/0501/05012005_greeting-canada.htm} (as of November 12, 2008). People’s Democracy is the weekly organ of the Communist Party of India (Marxist).}

The consensus among Americans wanting missile defense clearly must be fixed by transforming it to fit Dr. James M. Buchanan’s definition of demand, which mandates direct citizen participation in demanding necessary government action.

This means that before this will happen, action must first occur in mounting broad educational efforts involving citizens’ groups; local governments; state governors and legislators, including the attorneys general; members of Congress, both houses and both sides of the aisle; the president and the secretary of defense, whomsoever, and the professional military.

The common bond that holds this active consensus together must be made unequivocal: It is the common defense of the American people themselves, where danger knows no boundaries among them, that is the business at hand and must be attended to quickly.

The message should be honed down to a single word with a clarity everyone understands: Enough.

Panel 5 Report

Members of the IWG met several times to assess the implications of continuing political opposition to missile defense as described in section 5. They offer the following observations and recommendations.

Panel Members
- Chair: Dr. Daniel I. Fine
- Mr. Ilan Berman
- Mr. Brian Kennedy
- Mr. R. Daniel McMichael
- Dr. Kiron Skinner
- Dr. Robert F. Turner
- Mr. Paul M. Weyrich\footnote{deceased}

The 45-year-old culture upon which the doctrine of Mutual Assured Destruction has been based must be eliminated – that of population hostage holding by one country to the offensive ballistic missile weapons of another country, which was the centerpiece of the Anti-ballistic Missile Treaty.

While the treaty is gone, leaving the United States free to develop defenses against such weapons, the MAD doctrine still influences significant parts of U.S. foreign, security, and defense policies. This culture impedes rational and low-cost applications of the technology needed to provide fully effective missile defense systems. The “lingering ghost of MAD” still dominates the halls of government, the research labs, and the classrooms of academe.

The opposition to an effective missile defense is enormously strong and widespread, ranging through varying elements of the political, public policy, intellectual, and academic communities. Even though their numbers are relatively small compared with the more than 70 percent of Americans who want and expect their government to provide effective missile defense, opponents’ arguments need to be met head-on and refuted one by one.

Further, international opposition, some of it very intense, such as from China and Russia, must be firmly answered by the United States that it reserves the right to defend its own people from ballistic missile attacks, even as it fully respects and expects other nations of the world to exercise their right to so defend their own people. That is why the truly peaceful nations of the world should welcome the kind of global defenses that protect at least against limited strikes from hostile states or terrorist groups. That is also why global missile defense should be a world standard to be achieved, rather than an anathema to be shunned.

These conditions will not change until the majority of those who want effective missile defense become actively involved in challenging the still-lingering MAD culture. The most effective way to achieve this, indeed the only effective means to reshape the terms of debate in this country, is to demand of policy makers, opinion leaders, and educators forthright answers to two questions:

Should it be the policy of the United States government deliberately to hold its own citizens hostage or otherwise vulnerable to the offensive weapons of another nation or terrorist group?

For those who maintain that this form of population vulnerability in some way benefits the nation and should be continued as part of its defense, security, and foreign poli-
cies, a second question needs to be answered in understandable detail:

Why do you not want to defend us from a missile attack; what is it that makes you hostile to the idea; what higher calling is there than helping to protect your fellow citizens?

Missile defense opponents base their arguments on one or more of five broad themes: missile defense of the U.S. population (1) is wasteful and ineffective; (2) is provocative and destabilizing; (3) will weaponize space; (4) will give America too much unilateral power; and (5) is morally wrong.

In the matter of being wasteful and ineffective, historical evidence exists that during the 30 years of the ABM Treaty, available technology was hobbled for political reasons, so that the smothering of efforts to produce some missile defense systems either in concept or prototype were “dumbed down” or doomed to failure, so as to conform to the crippling restraints of the treaty. This kept the U.S. out of space defense and other efficient applications.

Today, ample lightweight technologies exist that could achieve desired results for effective missile defenses, but continuing political pressures thus far have largely blocked such efforts.

In the matter of missile defense being provocative and destabilizing, and will thus cause an arms race and destabilize world order, it has no substantive basis in fact. This was the argument originally used to justify the ABM Treaty, so that there has yet never been an effective ballistic missile defense system (save limited use of the Patriot missile during the 1990 Gulf War). Yet, the historical evidence is pointedly clear that ballistic missile arms races have continued in more than a dozen nations throughout the life of the treaty and still continue.

In 1950 Paul Nitze wrote in National Security Council Document-68 that when the Soviet Union obtained 200 nuclear warheads (with 100 deliverable on target), America would be in severe danger. Yet, a quarter century of arms control – and almost two decades of arms control with ABM constraints intended to damp down the arms race – actually massively increased Soviet warheads to over 30,000 at the height of the Cold War. The sad truth is that with respect to the ideology driving arms control – with its central fixation on eliminating defensive systems – the emperor had no clothes.

If opponents had been correct, the absence of missile defenses should have played a major role in actually stabilizing world order; instead, tensions surrounding nuclear and would-be nuclear powers have been steadily increasing, so that growing proliferation of weapons of mass destruction still continues. Thus, the converse more likely is true: additional evidence exists that effective missile defense capabilities could actually help to strengthen and enhance responsible arms control efforts, rather than to foster arms races and proliferation, as opponents so vigorously maintain.

In the matter of missile defense weaponizing space, the reality is that space was weaponized in 1944, when the first ballistic missile (the V-2) was launched by Nazi Germany. Since then, hundreds of satellites have been placed in orbit, many for particular military and intelligence uses, such as spy satellites and other command-control-communication assets, all of which are central to virtually all U.S. military operations. Additionally, the same cell phone, navigation, and internet systems that serve commonplace civilian needs likewise serve the military – weekend hikers in the mountains as well as troops on the ground, or directing SUVs and rescue units as well as smart bombs and cruise missiles to their respective destinations.

The real question is, How will placing a defensive weapon into space drive the weaponization of space, which already is the medium through which offensive ballistic missiles must travel in order to destroy their targets? The answer is that it will not. Missile defense will defend space and Earth, itself, from hostile offensive missiles. It will save lives, not take them; it will help stabilize, not destabilize.

In the matter of missile defense giving America too much unilateral power, the answer is found in the biases of individuals and groups comprising the American public. For those who believe that the United States should be kept vulnerable to the ballistic missiles of other powers, so as to “keep the U.S. in line” from “reckless international adventurism,” then effective missile defenses would give America too much power to “dominate” the wishes of other nations and, thus, should be discouraged. Others who believe that the first duty of government is to defend its citizens from hostile actions of other states without exception, of course, take the opposite view.

The answer, then, resides in the majority of Americans to choose decisively which way their government is to act. One of the guidelines to follow: those nations that wish America no harm will not object to its missile defenses. Those nations and their sympathizers who would like to marginalize the United States will, indeed, object.

In the matter of missile defense being morally wrong, the notion stems from various strains of pacifism and appeasement doctrines, such as: (1) by showing “peaceful intentions” the aggressor will be dissuaded from inflicting harm, and (2) a “defensive weapon” is really an “offensive weapon,” because the defending survivor then is able to strike back, hence, a “shield” is really an offensive weapon. This
line of reasoning played a significant role in the creation of the MAD doctrine.

If the morality of missile defense is to be questioned, then the entire proposition must be put on the table: if missile defense is morally wrong, it follows that it is morally right for government not to provide missile defense. This, then raises another dimension of the question already posed, which “moralists” opposing an effective missile defense system must answer forthrightly, completely, and convincingly, if they are to preserve their credibility: is it a moral act for the government of the United States deliberately to hold its own population hostage or otherwise vulnerable to the offensive weapons of another nation or terrorist group?

If Americans are to succeed in demanding effective missile defense before another 9/11 catastrophe, then several things must happen:

- Americans must insist on bipartisanship at all levels.
- The states (the governors, legislators, adjutant generals, homeland security directors) must become actively involved and not wait for the federal government to take the initiative. The states, too, have the primary responsibility of defending their citizens.
- The federal response should be to welcome the states as partners and incorporate missile defense of the American population as an integral part of the Department of Homeland Security, not just for post-disaster efforts, but to give active support to the national government in bringing about the kind of missile defense the nation needs.
- State participation is necessary because the executive branch and Congress must be fortified to resist the enormous pressures that will come from certain foreign powers and terrorist groups who will do everything possible to thwart missile defense development. The international community must have it made clear that Americans will exercise the right to defend themselves against a missile attack.
- This same dynamic between state and federal levels will also serve as a powerful incentive to enlist the cooperation and participation of friends and allies.

This kind of citizen-state support must, in turn, be effectively led by appropriate policy makers and technical personnel in the federal system who are charged with missile defense, and from this should emerge the following:

A. The surviving MAD culture that resists missile defense, development, and deployment must be subordinated within the relative departments of government, the Department of Defense (DoD) and Department of State in particular. This responsi-

bility falls to the senior professional military and senior statesmen.

B. Such steps and resolve must be led by the president, whomever, and the Congress in close cooperation on a bipartisan level.

C. Among other things, missile defense must be taken out of its current DoD structure and put in appropriate line-operating settings or stand-alone environments, such as under Navy command for sea-based systems or one or more of the government laboratories for specialized work in space-related systems.

D. The entire missile defense effort should report directly to the president via the secretary of defense and relevant congressional committees.

To complement this process, indeed to bring it about, several different educational programs from both private and public sectors must be mounted. Research materials, “laymen’s guides,” articles, and other kinds of presentations must emerge from the technical and intellectual communities, so that the American people are well educated and so that they may better play their indispensable role in building the citizen infrastructure upon which the state and federal governments can build the kind of missile defense the American people want and need at a price they can afford.
Missile defense has important international dimensions. First, as presented in this section, the basis exists for broad international participation and even for a division of labor with U.S. emphasis on space-based components and international partners, along with the United States, deploying sea-based and ground-based systems. As this section points out, a number of missile defense programs and efforts are already underway outside the United States. Second, as also discussed in this section, the United States faces opposition from Russia and China, both of which seek to derail U.S. missile defense efforts and to lock the United States into a strategic posture compliant with the concept of Mutual Assured Destruction that would leave the American population hostage to Chinese and Russian missile threats. For the United States, missile defense can be vitally important in strengthening its alliances and coalitions as well as providing cost savings and performance and testing data that could help serve as building blocks for an interoperable, internetworked international layered defense system. Missile defense would also help to strengthen extended deterrence – the security guarantees and assurances that the United States maintains not only with NATO allies but also with other countries, including Japan. In other words, there are opportunities for international cooperation to build a missile defense, just as there are obstacles, including allied opposition in some cases to U.S. space-based missile defense, which must be understood and overcome.

In meeting the threats posed to the United States and its friends and allies, there is a strong reinforcing relationship between the established concept of extended nuclear deterrence and the relatively new defensive deterrence. The two concepts were brought together in the 2002 Nuclear Posture Review, which established what was called a new triad. This includes (1) a mix of nuclear and non-nuclear strike forces; (2) missile defenses; and (3) revitalized research and development and a robust industrial infrastructure. This new triad is intended to deter attacks on U.S. territory as well as against U.S. friends and allies. Missile defenses are not a replacement for the nuclear forces that bolster the policy of extended deterrence. Instead, the idea is that extended deterrence should include a defensive element designed to increase its flexibility and adaptability in an era when international political developments are much less predictable. Missile defense that encompasses allies and coalition partners reinforces extended security relationships because it reduces the vulnerability of allies, coalition partners, and deployed forces.

It has been longstanding U.S. policy to discourage the possession of nuclear weapons by those who are not designated nuclear weapons states under the Non-proliferation Treaty (NPT). This policy has not prevented would-be enemies of the United States or friends and allies from obtaining nuclear weapons and ballistic missile capabilities. Missile defense provides an outlet for military cooperation with those allies who, despite U.S. preferences, have opted to obtain nuclear weapons. Missile defense can also furnish an alternative to nuclear weapons possession by U.S. allies who otherwise might question the continued credibility of the U.S. extended nuclear guarantee. At the same time, not only can missile defense deter hostile states from using nuclear weapons, it can also dissuade them from acquiring nuclear weapons and missile capabilities in the first place, or at least make the acquisition of such weapons costly and less attractive to would-be nuclear states who are enemies or potential adversaries of the United States.

In the years ahead the United States should continue to deploy a missile defense for the U.S. homeland and its forward-deployed forces. We should be prepared to include allies and coalition partners wherever feasible. Our ability both to defend the United States itself and to protect our overseas forces, allies, and coalition partners from missile attack, can reinforce U.S. security guarantees and provide reassurance to friendly countries in regions such as the Middle East and the Asia-Pacific area. An America vulnerable to missile attack by regional aggressors may be an America reluctant to take appropriate military action to defend its friends, allies, and regional interests. The result would be the erosion of extended deterrence and growing incentives on the part of countries formerly under our extended deterrence umbrel-
la to acquire their own nuclear weapons. At the same time missile defense reduces the incentive to take hostile action against the United States and its allies by increasing the risk that such moves will be successfully countered. The stronger the U.S. commitment to allies and coalition partners, reinforced by missile defense, the more limited will be the opportunity on the part of aggressive powers to split friends from the United States. A U.S. missile defense that is global in reach will contribute greatly to the credibility of U.S. overseas commitments, interests, and relationships.

For reasons discussed elsewhere in this report (see sections 1 and 2), a layered defense that includes a space-based capability affords the maximum opportunity to destroy a ballistic missile early in its trajectory from wherever it is launched, and it provides continuous coverage on a global basis for both the United States and its allies and coalition partners. With a space-based missile defense system, the United States would not be dependent on ground-based installations deployed overseas – perhaps in locations controlled by states or groups hostile to the United States at the time to U.S. interests. Sea-based systems also afford greater flexibility than a ground-based missile defense (GMD) system because they can be moved more easily to crisis regions where they are needed to protect U.S. or allied interests. Provided sea-based systems are in place or rapidly deployable, they furnish a capability for regional missile defense and thus can help prevent or limit escalation. As noted below, the growing number of nations (for example, Japan and South Korea) with Aegis missile-defense capabilities on their ships will mean that defenses are already in place, allowing for less pressure to get U.S. missile defense assets to the region.

Ground-based systems can protect a spectrum of civilian and military facilities and other targets. As noted in this section, there is growing interest in Europe in missile defense. In 2008 the United States completed missile defense negotiations with Poland and the Czech Republic. Israel has developed with U.S. assistance the Arrow missile defense system, while Japan is acquiring the Patriot Advanced Capability-3 (PAC-3) system as well as sea-based missile defense based on Aegis. The increasing number of allies in possession sea-based and ground-based missile defenses will augment U.S.-allied interoperability and the interning of ground- and sea-based sensors and systems. The list of these nations will continue to grow in the years ahead, allowing U.S. and allied missile defense efforts to create a basis for a “system of systems” in which the United States could deploy a layered missile defense that includes space-based and other components while allies and coalition partners place primary emphasis, in their respective programs, on sea-based and land-based systems.

The result would be a layered, multi-tier defense, with the United States having primary responsibility for missile defense in the boost and midcourse phases, with allies and coalition partners playing a greater role in the terminal phase. In the case of sea-based missile defense, allies and coalition partners will have an important role, particularly if they have ships with Aegis systems or similar capabilities. Such systems could also intercept missiles in the boost phase, depending of course on where the launch takes place and where the missile defense system deployed by allies and coalition partners is located. In coalition operations in which missile defense was required to protect forward-deployed forces against short-range missiles, the United States would have principal responsibility, especially if the United States was the leading contributor to the particular coalition operation.

The United States would have the primary role in financing, developing, and deploying space-based missile defense systems for boost-phase and midcourse interception among allies and coalition members. Other issues to be resolved include command, control, and communications systems, although a mutually satisfactory arrangement would have to be worked out in advance for determining how, when, and where missile defense interceptors would be launched in response to a missile attack against allies or coalition members. This requires extensive planning, joint testing, and exercises. However, it is a logical extension of what is already occurring as countries, for example in NATO-Europe, develop cooperative programs among themselves and with the United States. Such planning, testing, and exercises will have important implications for interoperability as well as conducting joint coalition missions other than missile defense.

As the United States and its allies develop their respective architectures, missile defense should be seen as a seamless web. Each segment of the architecture should reinforce and be related to the other parts as a system, creating an overall architecture that would include intercept capabilities from boost phase to terminal phase. The key to devel-
opposing missile defense architectures that provide for alliance and coalition needs lies in sufficient flexibility and adaptability. In practice, this means an ability on the part of U.S. partners to plug into missile defenses based on such factors as enhanced interoperability between current and planned U.S. and allied systems, joint U.S.–international planning of new missile defense technologies, and affordability.

As it develops missile defenses for itself and broadens international cooperation, the United States faces obstacles, including opposition in particular from China and Russia, even though the limited missile defense now being deployed and planned by the United States is not designed to be effective against larger and more sophisticated missile forces, such as those of Russia and China. In this respect, the U.S. missile defense is MAD-compliant, that is to say that the United States has chosen in effect not only to continue to hold itself hostage to Russia, but also not to counter China's growing offensive missile capabilities with a missile defense. Only in MAD logic is the United States obligated to underwrite the success of missile attacks against itself and in doing so, possibly to cast doubt on the credibility of extended deterrence commitments to countries that may be the future objects of Chinese or Russian political-military activity. This makes little sense strategically or logically.

Our Independent Working Group conclusion is that the United States should deploy a missile defense capable not only of defending against the smaller missile forces of rogue states and a terrorist launch, but also against the missile forces of states such as Russia and China. We make this recommendation with the assumption that the emerging security setting will be one that features multiple actors in possession of missiles who may be members of rapidly shifting coalitions. For example, the ability of the leading member of a coalition opposed to the United States, such as Russia or China, to threaten the United States (as China did during the 1996 Taiwan Strait crisis and more recently in July 2005) can diminish U.S. extended security commitments and possibly contribute to miscalculation and crisis escalation.

We turn next to a discussion of Russia and China, both of which have rapidly modernized their strategic nuclear arsenals while opposing U.S. missile defense programs.

Russia

With the collapse of the Soviet Union and the disintegration of much of Moscow’s once formidable conventional forces, Russia placed increased emphasis on nuclear weapons. Even as Russia has dismantled aging missiles and warheads, it has been maintaining and modernizing its nuclear force, as already noted in section 1. For example, Russia has deployed the Topol M intercontinental missile at a rate of about ten per year and removed from storage other intercontinental missiles. Because of its extensive reliance on nuclear weapons, Russia continues to discourage the United States from deploying missile defenses. Nevertheless, Russia itself has long had a missile defense program based on hundreds of surface-to-air (SAM) systems capable of defense against midrange and perhaps intercontinental-range missiles, together with a missile defense system around Moscow. In addition, by the 1980s the Soviet Union had deployed approximately 10,000 dual-purpose SAMs that in effect came to serve as a national missile defense in violation of the ABM Treaty. Despite the collapse of the Soviet Union at the end of 1991, battle management radars continue to cover the primary threat sectors internetted with the nearly 100 nuclear-tipped defensive missiles. Combined with the numerous SAM systems still operating around Moscow, Russia maintains far more interceptors compared with the U.S. missile defense system currently being deployed.

In July 2007, Russia deployed the S-400 (SA-20 Triumf) surface-to-air defense and theater anti-missile system and is planning to equip over two dozen battalions with the system by 2015. The S-400 will be able to destroy aircraft, cruise missiles, and short- and medium-range ballistic missiles at a distance of up to 400 kilometers. This system incorporates a new missile interceptor that is reported to have twice the range of the Patriot PAC-3 and well over twice the range of the S-300 missile it replaces. Russia has been marketing the S-300 and S-400 aggressively to China and in the Middle East, especially Iran, and is also interested in exporting these systems to Turkey. There have also been reports that Moscow has plans for an even more advanced missile defense system, the S-500, referred to as Vlastelin. And while the S-500 has not moved into development – because of reported financial constraints – development of the S-400 (and concept planning for the S-500) further underscores Russia’s strong interest and motivation to deploy robust missile defenses as a key component of its national security.

3 Very little is known about the S-500 system. On 08 August 2007 it was reported that the Russian Air Force commander stated that Russia was developing a fifth-generation air defense missile system that is superior to S-400 Triumf complex and capable of hitting targets in space. While working on the S-400, we have been developing a fifth-
According to Russian sources, Russia puts an average of three mobile and three or four fixed-site Topol-M ballistic missile systems into operation every year. In 2008, Russia conducted several test launches of ballistic missiles.4

In February 2001, then-President Vladimir Putin unveiled a Russian missile defense concept for Europe. Putin called for a European “non-strategic” missile defense limited to threats with ranges of less than 3,500 kilometers. His four-step process provided for (1) evaluating missile threats against European states, (2) developing a missile defense concept, (3) determining development and deployment of anti-missile units, and (4) establishing a joint early-warning center. The Russian proposal, which contained no cost estimates, development timelines, or organizational structures, represented a theoretical framework for a European-based TMD system that could be developed with Russian technology. This was clearly a gambit to assure Europeans and forestall a cooperative U.S.-led theater defense; yet by the fact that he made the proposal Putin acknowledged a growing missile threat to Europe.

Building on Moscow’s February 2001 missile defense concept for Europe, in 2003 Kremlin officials moved forward with cooperative theater, or “non-strategic,” missile defense interception and monitoring efforts with their NATO counterparts—both bilaterally with the United States and as part of the theater missile defense working group set up under the NATO-Russia Council. As part of this cooperation, NATO and Russia held command-post exercises to test operational coordination in March 2004 in Colorado Springs and in March 2005 in the Netherlands. An exercise was held in January 2008 in Germany under the coordination of the NATO-Russia Council at the Simulation and Integration Test Center of the Industrieanlagen-Betriebsgesellschaft located in Ottobrunn, near Munich.5 The Russian interest in missile defense, including international cooperation with NATO-European countries, underscores that Moscow continues to favor missile defense for Russia, while seeking to restrain the type and scope of U.S. missile defense deployments. Apparently it is only U.S. missile defense, not missile defense in general, that Russia opposes.6

6 For a detailed discussion of Russian opposition to missile defense sites in Eastern Europe, see, for example, Nabi Abdullaev, “Attacking the Shield: Russia Vows New Missiles if U.S. Builds in Eastern Europe,” Defense News, November 12, 2007.
8 “Missile weapons with a range of about five to eight thousand kilometers that really pose a threat to Europe do not exist in any of the so-called problem countries. And in the near future and prospects, this will not happen and is not even foreseeable. And any hypothetical launch of, for example, a North Korean rocket to American territory through western Europe obviously contradicts the laws of ballistics. As we say in Russia, it would be like using the right hand to reach the left ear.” Speech by Vladimir Putin, president of the Russian Federation, presented at the 43rd Munich Conference on Security Policy, Munich, Germany, February 10, 2007, http://www.securityconference.de/konferenzen/rede.php?sprache=en&id=1798& (as of November 12, 2008).

Despite the political changes that have taken place in the U.S.-Russian relationship, some positive and others negative, a U.S. missile defense site in Eastern Europe is viewed in Moscow as inimical to Russia. On numerous occasions, Russian political and military officials have denounced the U.S. plans to deploy the ground-based components of missile defense in Poland and the Czech Republic, which were once part of the Warsaw Pact.8 Before transitioning from the presidential to the prime-ministerial post in 2008, Vladimir Putin summarized Russian objections: “Our generals, our security council, consider these moves a threat to our national security.” He went on to say that Russia “will have to react appropriately by re-targeting our missiles.”9 After the collapse of the Soviet Union, Russia became increasingly dependent on nuclear weapons as its conventional forces atrophied. As U.S. officials have repeatedly pointed out, missile defense currently being developed is not directed against Russia. In detailed discussions with their Russian counterparts, U.S. officials have reiterated that the U.S. missile defense system is not sufficiently robust to intercept the large Russian ballistic missile force. Because Russian opposition to U.S. missile defense remains so great, one can only conclude that Russia, like the Soviet Union during the Cold War, seeks to drive a political wedge between the United States and NATO-Europe.

Russia has attempted to counter the planned U.S. missile defense deployment in Europe by denying the existence of a potential threat stemming from Iran.4 In early June 2008, Russia attempted to refocus the debate over the U.S. ballistic missile defense architecture in Europe by proposing joint use of the former Soviet radar at Gabala in Azerbaijan with the United States, an offer that the United States wisely refused. As the radar would be placed in a third country, a number of legal and decision-making issues would arise, possibly giving Rus-
ia or Azerbaijan the authority to block the tracking or interception of a missile launch. Furthermore, the radar’s proximity to Iran could make it less useful than the planned X-band radar in the Czech Republic for guiding the envisioned mid-course interceptor missiles toward the targeted missile.9

While opposing U.S. missile defense, Russia has again been able to put greater resources into its own military sector, largely as a result of rising energy revenues. Russia now possesses greater financial resources than at any time since the collapse of the Soviet Union. Russian foreign reserves now exceed $500 billion.10 With rising oil prices, Russia emerged as a petro-state. In addition to revenues from oil exports, Russia has begun to re-nationalize its petroleum natural resources after a brief period of private ownership following the collapse of the Soviet Union. With state control and ownership of oil revenues from exports, the Russian government will have an income stream undiluted by private dividends that it can plow back into the energy industry and also divert to missile technology and deployment as well as other military programs. This could open a new period of Russian military modernization based on high oil prices.11 Oil revenue has enabled Russia to boost defense spending to the point where its defense budget has become the world’s third largest.12 Shortly after assuming office in 2008

\[\text{For a discussion of rising Russian oil exports, see Steven Rosefielde, Russia in the 21st Century: The Prodigious Power (New York: Cambridge University Press, 2005): 88-89. “With petroleum production surging to 8 million barrels per day in 2002 and heading toward 10 million barrels (eclipsing Saudi Arabian production), the OPK (Russia’s Defense-Industrial Complex) doesn’t have to sell nuclear technology to Iran and China, participate in European Union national missile defense, be self-financing (khosraschyot), or depend on the ‘kindness of strangers.’ The government merely has to match its defense priorities with a willingness to prevent capital flight and tax the natural resource base.” Rosefielde also points to Russian aspirations to develop “full spectrum, fifth generation armed forces significantly larger than America’s in almost every category, including national missile defense.” Whether such aspirations will be realized, of course, as Rosefielde acknowledges, remains to be seen. What is evident, however, is what he terms “industrial militarization,” a large and embedded military-industrial sector, a legacy of the Soviet era, capable of persuading Russia’s leaders of the utility of using military capabilities to deal with worst-case security threats.}\]

\[\text{For a discussion of rising Russian oil exports, see Steven Rosefielde, Russia in the 21st Century: The Prodigious Power (New York: Cambridge University Press, 2005): 88-89. “With petroleum production surging to 8 million barrels per day in 2002 and heading toward 10 million barrels (eclipsing Saudi Arabian production), the OPK (Russia’s Defense-Industrial Complex) doesn’t have to sell nuclear technology to Iran and China, participate in European Union national missile defense, be self-financing (khosraschyot), or depend on the ‘kindness of strangers.’ The government merely has to match its defense priorities with a willingness to prevent capital flight and tax the natural resource base.” Rosefielde also points to Russian aspirations to develop “full spectrum, fifth generation armed forces significantly larger than America’s in almost every category, including national missile defense.” Whether such aspirations will be realized, of course, as Rosefielde acknowledges, remains to be seen. What is evident, however, is what he terms “industrial militarization,” a large and embedded military-industrial sector, a legacy of the Soviet era, capable of persuading Russia’s leaders of the utility of using military capabilities to deal with worst-case security threats.}\]

\[\text{Russian defense spending increased by as much as 30 percent in 2007, which followed 22 percent and 27 percent growth in 2005 and 2006, respectively. Peter Brookes, “Russia Resurgent,” Armed Forces Journal, August 2007, http://wwwarmedforcesjournal.com/2007/08/2873884 (as of November 12, 2008).}\]

\[\text{Russian defense spending increased by as much as 30 percent in 2007, which followed 22 percent and 27 percent growth in 2005 and 2006, respectively. Peter Brookes, “Russia Resurgent,” Armed Forces Journal, August 2007, http://wwwarmedforcesjournal.com/2007/08/2873884 (as of November 12, 2008).}\]

Missile Defense, the Space Relationship, and the Twenty-First Century

Missile Defense: International Dimensions

11 For a discussion of rising Russian oil exports, see Steven Rosefielde, Russia in the 21st Century: The Prodigious Power (New York: Cambridge University Press, 2005): 88-89. “With petroleum production surging to 8 million barrels per day in 2002 and heading toward 10 million barrels (eclipsing Saudi Arabian production), the OPK (Russia’s Defense-Industrial Complex) doesn’t have to sell nuclear technology to Iran and China, participate in European Union national missile defense, be self-financing (khosraschyot), or depend on the ‘kindness of strangers.’ The government merely has to match its defense priorities with a willingness to prevent capital flight and tax the natural resource base.” Rosefielde also points to Russian aspirations to develop “full spectrum, fifth generation armed forces significantly larger than America’s in almost every category, including national missile defense.” Whether such aspirations will be realized, of course, as Rosefielde acknowledges, remains to be seen. What is evident, however, is what he terms “industrial militarization,” a large and embedded military-industrial sector, a legacy of the Soviet era, capable of persuading Russia’s leaders of the utility of using military capabilities to deal with worst-case security threats. Rosefielde also points to Russian aspirations to develop “full spectrum, fifth generation armed forces significantly larger than America’s in almost every category, including national missile defense.” Whether such aspirations will be realized, of course, as Rosefielde acknowledges, remains to be seen. What is evident, however, is what he terms “industrial militarization,” a large and embedded military-industrial sector, a legacy of the Soviet era, capable of persuading Russia’s leaders of the utility of using military capabilities to deal with worst-case security threats.

14 These include a January 2003 “strategic stability” agreement put forth by the Russian foreign ministry and a bilateral framework on military-technical cooperation under discussion in the summer of 2003. See RIA Novosti, January 20, 2003; and Interfax, July 16, 2003. Additionally, in May 2005 the foreign ministry revealed that it was preparing a draft resolution for the UN General Assembly to prevent the weaponization of space; see Xinhua Online, “Russia to Submit UN Resolution on Weapons Ban in Outer Space,” May 25, 2005, http://news.xinhuanet.com/english/2005-05/25/content_3002680.htm (as of November 12, 2008).
year. China is also modernizing its inventory of intercontinental ballistic missiles (ICBMs). By 2010, China will have placed into operation a new, solid-propellant mobile ICBM, the DF-31 (7,250-plus kilometers), an extended-range DF-31A (11,270-plus kilometers), and the Jilulong-2 (JL-2), a new submarine-launched ballistic missile (SLBM). China has completed two ballistic missile submarines, believed to be fin-class (Type 094) submarines. Each can carry between 10 and 12 JL-2 SLBMs.

The growth of short-range ballistic missiles and ICBMs constitutes only one portion of a massive military modernization being pursued by Beijing to support its military power-projection capability. Overall, this effort encompasses a major expansion in China’s air, naval, land, and asymmetric warfare capabilities. There have been annual double-digit increases in Chinese defense expenditures over the past decade and a half. In March 2008, China announced a $58.8 billion military budget, a 17.6 percent increase over the previous year.

Much of this growth occurred before the United States deployed any missile defense. Today the Chinese oppose even the limited U.S. missile defense deployment currently underway even though avowedly it is not directed against a Chinese missile launch. U.S. assurances that its missile defense is not designed with China in mind may lead Beijing to believe that it can again threaten the United States, as happened in the 1996 Taiwan Straits Crisis. In July 2005, a senior Chinese military official threatened the use of nuclear weapons against the United States in case of American military intervention in a conflict over Taiwan. If China represents a rising power that will challenge U.S. interests, it makes no strategic sense for the United States to deploy a missile defense that fails to address the threat posed by China. Instead, the United States should move toward a missile defense that affords a future U.S. president maximum flexibility in managing a crisis with Beijing. A space-based system would allow the United States to detect ballistic missiles launched from China’s interior. An intercontinental ballistic missile (ICBM) at an altitude of 200 kilometers is only detected within 1,600 kilometers by ground-based sensors, while space-based sensors at an altitude of 15 kilometers can detect an ICBM within 2,000 kilometers. Thus, a non-space-based missile defense is less capable than a space-based missile defense system. For these reasons, China, along with Russia, has been a strong advocate of a ban on space weapons. In February 2008, the two countries proposed a global treaty to prohibit the use of weapons in space, an initiative launched by Russia in 2002.

While warning against U.S. space initiatives, China continues to develop space capabilities that would restrict the U.S. use of space for defense purposes. In January 2007, China demonstrated the rapid strides that it has made in its space program when it destroyed a Chinese satellite in a low-earth orbit. One year later, in February 2008, in response to the U.S. destruction of a malfunctioning spy satellite, China warned against threats to security in space without mentioning its own successful anti-satellite missile launch the year before. Furthermore, China conducted a test of the JL-2 on May 29, 2008. The JL-2 missile could be deployed with an anti-satellite warhead capable of destroying U.S. satellites, similar to the land-based missile used successfully against the Chinese satellite in January 2007. Last but not least, China has joined Russia in criticism of the planned U.S. missile defense installation in Eastern Europe.

Europe

In their thinking about missile defense, Europe and the United States, broadly speaking, have come from opposite ends of the spectrum. Defense against aircraft was a major NATO-
European Cold War preoccupation leading to the development of an air defense belt across the NATO central front. In the United States, the debate has historically focused on defense against intercontinental ballistic missiles, especially after President Reagan’s March 23, 1983, speech calling for a concerted effort to develop a missile defense and the subsequent U.S. decision to deploy a missile defense against long-range threats. The discussion of missile defense in Europe has evolved from defense against aircraft to defending against short-range missiles (extended air defense) as well. In the United States, faced with the growing threat of missiles armed with weapons of mass destruction, the debate has increasingly emphasized defense against missiles of varying ranges. The effect of 9/11 was to bring into the U.S. discussion a greater appreciation of the destruction that could be wrought by an aircraft used as a weapon. In Europe the implications of 9/11 included a greater recognition of vulnerability to terrorist action. European support for the development of missile defense systems represents a logical evolution from air defense. In the United States the effect of 9/11 was to reinforce the need for defense against a broad range of threats. The overall result has been a narrowing of transatlantic differences and an emerging consensus on missile defense that was reflected at the NATO Bucharest Summit in April 2008.

To the extent that Europeans have considered missile defense, the emphasis has been on TMD systems. This is the focus of NATO efforts based on the TMD feasibility studies approved by the Alliance in October 1999. The need for a unified, interoperable NATO-wide TMD architecture has become more urgent in light of coalition operations and the multiplicity of tasks for missile defense. Such systems would form the terminal defense against shorter-range missiles and could become part of a broader architecture providing for a layered missile defense, thus creating the basis for a transatlantic division of labor or at least greater specialization of effort between NATO Europe and the United States in defense against ballistic missiles.

In addition to ongoing work on programs such as the Medium Extended Air Defense System (MEADS), the United States has also moved forward with plans for a larger regional anti-missile architecture. This includes agreements to upgrade two crucial radar bases, the Fylingdales Royal Air Base in northern England and the Thule facility (finished in 2007) in the Danish autonomous colony of Greenland – for missile defense duties, as well as institutionalizing an ongoing ABM dialogue with both Copenhagen and London. The upgrades will give the radars the capacity to track and establish the flight trajectories of missiles and their payloads, making the two radars more capable of guiding U.S. missiles to intercept ballistic missiles launched from the Middle East. 27

A substantial diplomatic campaign launched by the White House beginning in mid-2002 also developed into a broad range of possible anti-missile roles for Eastern European countries, ranging from early warning to the basing of terminal-phase defenses. In 2007, the United States initiated negotiations on installation of ten ground-based mid-course interceptors in Poland and X-band radar in the Czech Republic. The negotiations on the radar base with the Czech Republic were concluded in May 2008, and the bilateral treaty between the United States and the Czech Republic was signed in early July 2008. Negotiations with Poland on the interceptors were completed in August 2008. The third site is intended to defend much of Europe while also supplementing the capability to defend the United States against a possible missile fired from Iran or elsewhere in the Middle East.

Although Russia and China have vehemently opposed U.S. plans to deploy the ground components of missile defense, this opposition has not had any appreciable negative effect in NATO–Europe. Since the November 2002 NATO missile/index.php (as of November 12, 2008). A preliminary design review was completed in 2007, with a critical design review expected in 2009 and test flights in 2011. See Tom Kington, “MEADS Evolves To Take on German, NATO Plans,” Defense News, April 28, 2008.

The project, pursued trilaterally by the United States, Germany, and Italy, is designed to produce a tactical, mobile terminal-phase theater missile defense complement for deployed American and European troops. The United States and Italy signed the MEADS Design and Development Memorandum of Understanding in September 2004, allowing the two countries to proceed with the project on a “limited basis.” In May 2005, the Bundestag approved entry into the design and development phase of MEADS, allowing Germany to become an official signatory. See Defense Industry Daily, “Germany Approves Involvement in MEADS Missile,” May 2, 2005, http://www.defenseindustrydaily.com/2005/05/germany-approves-involvement-in-meads-

Missile Defense, the Space Relationship, and the Twenty-First Century

Missile Defense: International Dimensions

105
Prague Summit the Alliance has sharpened its focus on the growing ballistic missile threat. The final communiqué of the Prague Summit emphasized that NATO had reached an Alliance-wide commitment to examine “options for addressing the increasing missile threat to Alliance territory, forces and population centers.” Following up on this commitment, in January 2004 NATO commissioned a study to explore the feasibility of a strategic missile defense system that would protect the alliance from a ballistic missile attack. The classified report was completed in early July 2005, and it reportedly addressed a variety of issues, including the location of interceptor sites and sensors, management of debris from intercepts of incoming missiles, the rules of engagement for an allied ballistic missile system, the sensors needed for an early warning system, cost estimates, and a threat analysis. This report served as input into a final report from NATO’s Conference of National Armaments Directors that was released on May 10, 2006. At the subsequent NATO summit meeting in Riga, Latvia (2006), the Alliance reiterated its commitment to continue work on “political and military implications of missile defense for the Alliance including an update on missile threat developments.” In April 2008, at the Bucharest Summit, NATO endorsed U.S. efforts with regard to the third site and reiterated that it is exploring the possibility to “link this capability with current NATO missile defense efforts” and to “ensure that it would be an integral part of any future NATO-wide missile defense architecture.”

NATO is moving ahead with the development of a deployable Alliance theater missile defense system that would be used to protect military forces during operations and to provide defense from short- and medium-range missile threats (up to 3,000 kilometers) in certain regional settings. In July 2005, NATO authorized $480 million for this purpose, and the final system will incorporate countries’ TMD components to target a missile in its boost, midcourse, and terminal phases. For instance, for the boost phase, NATO expects to employ armed unmanned aerial vehicles or, if available, airborne lasers, and for the midcourse phase, it may employ the Terminal High Altitude Area Defense (THAAD) system. For the terminal phase, NATO may utilize MEADS or the PAC-3 system, or perhaps the Franco-Italian Surface Air Moyenne Portée/Terre system. A program organization has been established to develop management and technical capacities. According to Michel Billard, head of the Active Layered Theater Ballistic Missile Defense (ALTBM) program, “Development of NATO MD architectures around U.S. MD assets in Europe and ALTBM can leverage upon ALTBM and use a technical process similar to the one used for ALTBM.” Furthermore, full linking of these two systems will ensure inclusion of those NATO members outside the perimeter of the third site in Poland and the Czech Republic.

Middle East

The United States has expanded its missile defense dialogue and cooperation with several Middle East states. The need for missile defense in the region is enhanced by Iran's ongoing development of ballistic missiles. In recent decades the Middle East has been the scene of missile proliferation, together with the extensive use of missiles during the Iran-Iraq war in the 1980s and the first Gulf War in 1991. Turkey has been a focus of U.S. missile defense efforts both as a developmental partner for European defenses and as a possible basing location for defenses against regional ballistic missile threats from the Middle East. Turkey has discussed the purchase of Israel's Arrow ballistic missile defense system. Turkey's need for missile defense became apparent during U.S. operations against Iraq in 1991. At that time and again in 2003 during operation Iraqi Freedom, U.S. Patriots were stationed in Turkey to defend from possible Scud missile attacks.

Israel

The impetus for missile defense cooperation has strengthened in Israel as a result of Iran's nuclear program and repeated threats against Israel emanating from Iran's leadership.

36 Ibid.
This has led to the deployment of a total of two Arrow-2 batteries. The first began deployment in 2000 and the second in 2002. The Arrow missile defense system was developed jointly by Israel and the United States, with funding and technology provided principally by the United States. Israel’s Arrow system provides concentrated missile defense coverage appropriate for the country’s compact geographical size (comparable to New Jersey). The United States has deployed an X-Band anti-missile radar in Israel that is capable of tracking ballistic missiles shortly after launch. Especially if interdicted fully with the U.S. Aegis or with a space-based missile defense such as proposed in this report, Israel could be given highly effective coverage against a future Iranian ballistic missile attack.

The launching of large numbers of very short-range Katyusha missiles against Israel in the summer of 2006 has led to two efforts to deploy defenses against this type of threat. The first, called Iron-Dome, is a hit-to-kill intercept and the second, termed David’s Sling, is a laser-based counter-mortar program. The Iron-Dome battery would consist of a series of missile-interceptor firing units and associated radars. It would be designed to protect Israeli population centers from short-range rocket attack. The David’s Sling system would help protect Israel’s border areas from mortar attacks.

The Israeli commitment to missile defense underscores the perceived need for protection against a spectrum of threats. These include cross-border terrorist attacks, possibly with WMD, but also missiles armed with conventional or nuclear warheads. The Israeli approach to defense incorporates both the horizontal (terrestrial) and vertical (through air space) threats. This is notable in light of the argument sometimes used against missile defense to the effect that preventing the smuggling of a nuclear weapon or WMD terrorist across our borders or through our ports should be a higher priority than defenses against a missile attack. Having experienced suicide terrorists, although not yet with WMD, as well as short-range rocket attacks by Hezbollah forces in 2006 and threats from Iran with longer-range missiles, Israel focuses on combating both terrorists and missiles.

Israel has also conducted joint missile defense exercises with the United States. For example, in March 2005 Israel test-fired Arrow 2 interceptors against Scud-type targets in conjunction with the U.S. Army’s Patriot air defense system. Together these missile defense systems provide the beginning of a tiered missile defense for Israel. The Arrow has an intercept altitude range between 40 and 100 kilometers, a maximum altitude three times higher than the Patriot’s. Together, the Arrow and Patriot could form a part of the system-of-systems concept presented earlier in this section. In February 2007, the Arrow-3 systems were tested successfully against a Shahab-3 type of weapon. As a more advanced version of the Arrow missile defense system, the Arrow-3 will intercept at higher altitudes than the Arrow-2 is capable of reaching, thus contributing to a layered missile defense. The Arrow-3 is scheduled for deployment in the next several years, perhaps as early as 2010.

Last but not least, U.S. missile defense cooperation with Israel includes an X-band radar capable of detecting missile launches up to 1500 miles away as well as short-range missiles that might be launched from sites closer to Israel. This radar is comparable to the system to be installed in the Czech Republic. The radar is operated by U.S. technicians and security guards representing the first time in Israel’s history that a foreign military presence has been based there. The radar would give Israel additional response time in the event that a missile was launched against its territory. The deployment of the X-band radar in 2008 also is in

41 The exercises were "intended to demonstrate the ability of the Arrow’s ground-based radar and battle management center to work with the Patriot system elements to define incoming targets, determine a plan of attack, and assign specific launchers and missiles for intercept missions." Another large exercise of Israeli and U.S. systems was conducted in 2007 and aimed at combining their missile defense systems; GlobalSecurity.org, "U.S./Israel Complete Successful Arrow Missile Defense Test," March 19, 2007, http://www.globalsecurity.org/sp acelibrary/news/2007/space-070326-mda01.htm (as of November 17, 2008).
tended to strengthen the U.S. extended security commitment to Israel.43

\textbf{Gulf Cooperation Council}

Over the past two years, the members of the six-nation Gulf Cooperation Council (GCC) – Saudi Arabia, Kuwait, Oman, Qatar, Bahrain, and the United Arab Emirates – have begun to explore a range of individual and collective defense options as a response to Iran’s growing ballistic missile capabilities. This has fostered closer cooperation with the United States on the part of several GCC countries, most notably Saudi Arabia, Kuwait, and the United Arab Emirates (UAE), which have shown interest in the PAC-3 system. In December 2007, the U.S. government notified Congress of the possible sale of PAC-3 to Kuwait and the UAE; the UAE requested 288 PAC-3, 216 Guided Enhanced Missiles-T (GEM-Ts), nine Patriot fire units and equipment; Kuwait is seeking 80 PAC-3, GEM-T modification kits to upgrade PAC-2 units and other systems upgrades totaling $1.4 billion. Saudi Arabia has given two contracts to Raytheon totaling more than $100 million for air defense missile systems and other work, including providing technical, training, and logistics support through 2009 for Saudi Patriot and HAWK air defense systems.44

\textbf{Asia-Pacific Area}

\textbf{Japan}

Japan’s missile defense cooperation with the United States – accelerated in the wake of North Korea’s surprise launch of a two-stage Taepo Dong missile over the Sea of Japan in August 1998 – has taken on a new urgency as a result of growing concern over North Korea’s nuclear program (Pyongyang announced in February 2005 that North Korea possesses nuclear weapons), and less publicly by the increasing threat posed by China. The Japanese government has moved decisively toward a limited deployment of missile defenses built around the U.S. Patriot and Aegis/Standard Missile (SM)-3 systems. Japan began deploying PAC-3 units in 2007.45 Japan has installed its fourth PAC-3 Patriot missile defense battery and hopes to have an additional three PAC-3 batteries within the next three years.46 Japan has also conducted a successful missile intercept exercise off Hawaii, from the Aegis destroyer Kongo.47 Also, as noted previously, Japan is contributing financially to the development of a new missile, the SM-3 Block IIA, with a 53-centimeter-diameter base that is expected to have a greater velocity and range than the current 36-centimeter model SM-3.48 As demonstrated in early 2005, the current SM-3 Block I missiles can intercept short-range ballistic missiles while the Block IIA will have the capability to shoot down ICBMs and as well as short-range ballistic missiles.49

At the same time, Japanese lawmakers have begun to revise the nation’s defense laws, formulating new legal protocols to facilitate prompt political responses to ballistic missile launches and proposing amendments to its constitution that would allow Japan to intercept missiles targeting third countries (including the United States) overlying its territory. Most recently, in May 2008 the Japanese Diet enacted a new law that allows Japan to use space for defensive purposes.50

Japan is engaged in negotiations for cooperative work with the United States on an airborne directed-energy antimissile project – one similar to the Airborne Laser now being developed by the U.S. Air Force.51 In December 2004, Japanese and American officials signed a new memorandum on missile defense cooperation, laying out procedures for information sharing effort to upgrade the SM-3 interceptor; Bill Gertz and Rowan Scarborough, “Inside the Ring,” \textit{Washington Times}, May 20, 2005, http://www.gertzfile.com/gertzfile/ring05/2005.html (as of November 12, 2008). The United States and Japan initiated the joint research effort to upgrade the SM-3 interceptor in 1999 following North Korea’s test of the Taepo Dong in August 1998. The larger interceptor will include an enhanced nosecone, infrared sensor, and kinetic warhead.

In a February 2005 test, a short-range target missile was launched from the Hawaiian island of Kauai, and the SM-3 interceptor missile was launched from an Aegis-equipped cruiser 160 kilometers from the island. The interceptor scored a direct hit on the ballistic missile outside of the atmosphere. See Globalsecurity.org, “RIM-161 SM-3 Flight Test Program,” February 25, 2008, http://www.globalsecurity.org/ space/systems/sm3-test.htm (as of November 17, 2008).

48 Tokyo has agreed to contribute roughly $600 million over five years (beginning in 2007) to upgrade the SM-3 interceptor; Bill Gertz and Rowan Scarborough, “Inside the Ring,” \textit{Washington Times}, May 20, 2005, http://www.gertzfile.com/gertzfile/ring05/2005.html (as of November 12, 2008). The United States and Japan initiated the joint research effort to upgrade the SM-3 interceptor in 1999 following North Korea’s test of the Taepo Dong in August 1998. The larger interceptor will include an enhanced nosecone, infrared sensor, and kinetic warhead.

In a February 2005 test, a short-range target missile was launched from the Hawaiian island of Kauai, and the SM-3 interceptor missile was launched from an Aegis-equipped cruiser 160 kilometers from the island. The interceptor scored a direct hit on the ballistic missile outside of the atmosphere. See Globalsecurity.org, “RIM-161 SM-3 Flight Test Program,” February 25, 2008, http://www.globalsecurity.org/ space/systems/sm3-test.htm (as of November 17, 2008).

49 In a February 2005 test, a short-range target missile was launched from the Hawaiian island of Kauai, and the SM-3 interceptor missile was launched from an Aegis-equipped cruiser 160 kilometers from the island. The interceptor scored a direct hit on the ballistic missile outside of the atmosphere. See Globalsecurity.org, “RIM-161 SM-3 Flight Test Program,” February 25, 2008, http://www.globalsecurity.org/ space/systems/sm3-test.htm (as of November 17, 2008).

national security threat. Taiwan, threatened by China’s military modernization and its massive buildup of missiles along the Taiwan Strait, is building a missile defense system that includes the development of indigenous land- and sea-based ABM capabilities, as well as stepped-up efforts to acquire a range of advanced U.S. ABM systems such as radars, the Patriot- and Aegis-capable Arleigh Burke-class destroyers. In June 2005, Raytheon was awarded a $752 million contract to provide Taiwan with an early warning surveillance radar by September 2009. However, in March 2005 an arms procurement package worth $18 billion that included six PAC-3 batteries, eight conventional submarines, and 12 anti-submarine aircraft, was cut in half by the Taiwanese legislature, and no PAC-3 batteries were purchased. In July 2006, Taiwan test-fired the Patriot Air and Missile Defense System using Patriot Guidance Enhancement Missiles (GEM) to destroy two surrogate ballistic missiles. Until the end of 2007, the Taiwanese legislature did not consider purchasing PAC-3 batteries, proposing instead that upgrades be made to Taiwan’s PAC-2 missile defense systems. In 2008, however, Taiwan passed a $10.5 billion defense budget, which included funding for six PAC-3 missile defense batteries, with a total of 384 missiles.

India

India, spurred by Pakistan’s ballistic missile capabilities and its missile partnership with China, has begun work on a hybrid domestic missile defense system to provide an area missile defense covering a radius of over 200 kilometers and incorporating Israeli Green Pine radars and upgraded variants of India’s Prithvi ballistic missile. India has also acquired from Israel several units of the Barak ship-based anti-missile system, which is capable of intercepting incoming missile threats at a range of 70 kilometers. As part of the June 2005 U.S.-India defense pact, the United States

South Korea

South Korea has sharpened its focus on missile defense. Construction was begun in November 2004 of the first of three Aegis-equipped KDX-III destroyers, with all three scheduled to be completed by 2010. In June 2007, South Korea reaffirmed that it would set up its own missile defense system starting in 2008. The destroyers will be equipped with the Aegis Combat System, which will permit the ships to perform search, tracking, and missile guidance functions on over 100 targets simultaneously. The KDX-III will have anti-air, anti-surface, and anti-submarine warfare capabilities, as well as the capacity to shoot down certain categories of tactical ballistic missiles. South Korea had planned to acquire 48 PAC-3 missile defense units, but in 2002 decided against this purchase, given cost concerns. In April 2008, Raytheon Company received a $241 million U.S. Foreign Military Sales contract to provide South Korea with command and control, communications, maintenance support, and training equipment for the Patriot air and missile defense system.

Taiwan

Taiwan, threatened by China’s military modernization and its massive buildup of missiles along the Taiwan Strait, is

56 Pike, “Tien Tan Advanced Combat System Ship [AEGIS].”
offered to sell India the PAC-3 system. Nevertheless, the question of India’s role in the U.S. missile defense architecture remains open. So far, India has been developing missile defenses domestically. In December 2007, the Indian government announced plans to acquire a system that would protect major cities by 2010. In February 2008, Secretary of Defense Gates announced that the United States and India were considering a joint missile defense project.

Australia

The Australian government has steadily drawn closer to U.S. missile defense plans since its official announcement in late 2003 of a program to counter ballistic missile and WMD proliferation threats. As part of this effort, Canberra signed a bilateral memorandum on naval warfare with the United States, paving the way for closer technology and communications cooperation between their navies. In July 2004, the two countries signed a memorandum of understanding (MOU) calling for cooperation on missile defense development over the next 25 years. For instance, both countries are interested in determining whether the joint U.S.-Australian early warning sensors at Pine Gap and Australia’s ground-based Jindalee radar, which was developed to detect aircraft and ships, could also be used to track ballistic missiles during the early boost phase. Australia’s defense minister, Richard Hill, also indicated in June 2004 that ballistic missile interceptors may one day be deployed near Australian cities, given the growing threat from the proliferation of ballistic missiles. To implement the MOU, U.S. and Australian defense officials in January 2005 held consultations regarding cooperative work on intensified R&D on anti-missile capabilities. In May 2007, Australia, Japan, and the United States concluded a trilateral missile research agreement. As a part of that process, the Australian government is examining whether Australian navy destroyers due to enter service in 2013 should be equipped with SM-3 missiles.

The Limits of, and Potential for, Cooperation

As it moves forward with missile defense, the United States should embrace as an overall strategic goal the creation of a layered, multi-tier, system-of-systems defense that affords protection to all or as many allies as possible. Such an approach is based on several key premises: (1) that the United States will be engaged in operations in which coalition support and participation will be useful, if not critically important; (2) that as a result of increasing vulnerability, missile defense will loom as a greater part of an overall strategy both to deter and defend against the use of missiles; and (3) that contributions from coalition members and allies to missile defense will reflect the differing situations facing the various countries as well as the competition between missile defense and other budgetary priorities. The result of such an approach will be varying levels of protection against missiles of differing ranges. It will be possible to provide protection for national territory and defense of forward-deployed assets.

As noted earlier, common to all of these developments is a newfound consensus regarding the gravity of the threat posed by ballistic missiles, and the centrality of missile defense in the strategic response. Such a focus is logical. In the contemporary international security environment, the ability to ensure the security of its foreign partners against ballistic missile attack and the associated threat of WMD blackmail has become an increasingly important component of America’s ties with its allies abroad, and a key determinant of continued coalition solidarity and extended deterrence.

Several important problems would need to be addressed in collaborative programs between the United States and its allies. These include the sharing of information as well as technology transfer and the allocation of contracts. Because of the cutting-edge nature of technologies being developed in the United States, there would inevitably be concerns about technology security, particularly in the area of command, control, communications, computing, intelligence, surveillance, and reconnaissance. Consequently, the bulk of these technologies are likely to be developed largely if not exclusively in the United States with allies purchasing whole systems or co-producing them under appropriate licensing arrangements. These problems have already been encountered by NATO in its effort to link the command com-

Because of drastically lower overseas spending levels, the potential for contributions from international partners to R&D for missile defense may be limited. As a result, advanced technologies, particularly those related to space, are likely to be registered more in the United States than overseas. Nevertheless, there are several arguments in favor of international missile defense cooperation. First, the essential issue is the mutual political and technological benefits that could result from cooperative technology programs at the international level. Among the benefits for overseas partners could be the opportunity to work with the United States in developing new technologies. In addition, technologies and other assets that would shorten the development time and perhaps make less costly the fielding of a U.S. missile defense may sometimes be available outside the United States. Such cooperation will enhance the interoperability of U.S. and allied systems, a development that will provide benefits beyond the missile defense mission. In addition, training and planning with allies who already possess – or who will shortly – U.S. missile defense systems such as Aegis-equipped ships and the Patriot will enhance U.S. flexibility, interoperability, and the internetting of communications/sensors, as well as help generate common U.S.-allied concepts of operations for the missile defense mission in future regional contingencies. This will allow some specialization (an allied focus on ground- and sea-based defenses while the United States provides space-based defenses) and in certain circumstances relieve or minimize the burden of the United States to make costly and time-consuming deployments of its ground- and/or sea-based assets during regional crises. Where practical and when they possess relevant expertise, allies should also participate in the development of sea- and space-based assets, particularly given that they provide far greater missile defense capabilities than ground-based systems.

However, what overseas partners often lack is the level of investment necessary to move technologies from the drawing board to actual systems that could be deployed. Politically, the United States could strengthen its overall relationship with its allies by cooperative programs where the United States and its allies and coalition partners share threats and interests, and can benefit mutually from pooling their resources to produce a truly global layered missile defense that includes a space-based component, thus reinforcing the extended deterrence provided by the United States to numerous allies and coalition partners.

According to NATO officials, the objective for the integration of the two MD systems is to “demonstrate the bi-directional exchange and display of Situational Awareness (SA) between C2BMC and ACCS prototype.” Collaborative development of unclassified scenarios is just one of the ways to accomplish this process. As Michel Billard, head of the NATO ALTBMD program, noted, “Going from ALTMBD to MD does change the nature of the threat and the scenarios but does not change the nature of information exchanged and the way to exchange it.” Michel Billard, “Linking US MD with NATO ALTMBD.”

Efficient investment of sources is of great concern among European security officials and experts. Klaus Naumann, the former chief of defense in Germany, recently warned that while Europe is spending around 60 percent of the amount spent by the United States on defense, it is achieving only 20 percent of the capability because governments are spending so inefficiently. James Kanter, “Europe’s Uphill Fight on Military Spending,” International Herald Tribune, April 8, 2006, http://www.iht.com/articles/2006/04/07/business/wbdefense.php (as of November 19, 2008).
Panel 6 Report

Members of panel 6 discussed alliance issues related to missile defense, with section 6 as background. The questions set forth below were addressed.

Panel Members
Chair: Dr. Robert L. Pfaltzgraff, Jr.
Mr. Ilan Berman
Ambassador Henry F. Cooper
Dr. Daniel I. Fine
Mr. Brian Kennedy
Mr. Mead Treadwell

I. What are the implications of the key issues raised in section 6 for missile defense, and specifically for allied cooperation to develop and deploy a global missile defense, as we look beyond 2008?

As section 6 notes, U.S. allies have differing needs based on a spectrum of threats, including missiles of shorter and longer ranges. At the same time, forces deployed overseas by the United States are also vulnerable to a missile attack. No less than the United States, America’s technologically advanced allies are especially vulnerable to the major threat of electromagnetic pulse or EMP that could result from a nuclear detonation over or near their respective territories, possibly launched from a ship-borne Scud near our coasts or those of allies. An EMP attack against the United States would have cascading effects in other countries and major international economic consequences. By the same token such an attack mounted against technologically advanced allies and other countries of economic importance would have potentially devastating effects in the United States. An EMP attack might also disable much of our command and control assets, and our ability to conduct military operations during a crisis could also be harmed by other effects on our weapons systems and supporting infrastructure in an overseas region of importance to the United States, such as Europe, the Middle East, Northeast Asia, or elsewhere.

Several political and technological benefits may accrue for the United States and its allies from cooperative missile defense programs: allies would have the opportunity to work with the United States in developing new technologies; technologies and assets that could shorten deployment of a U.S. missile defense may reside with American allies; missile defense planning, joint testing, and exercises will help the U.S. and its allies develop common concepts of operations and facilitate interoperability; cooperation may have beneficial effects on future access and basing of missile defenses on allied territories; and the United States could strengthen its overall relationship with its allies via such cooperative programs.

Moreover, the fact that an increasing number of U.S. allied and coalition partners possess sea-based and/or ground-based missile defenses (several of which are U.S. systems such as the Aegis and Standard Missile systems and the Patriot) will provide cost savings and augment U.S.-allied interoperability and the interning of ground- and sea-based sensors and systems to provide an integrated layered defense. When combined with space-based missile defenses that can intercept ballistic missiles in all three phases of their trajectory, these systems provide the starting point for a missile defense that could target, track, and destroy hostile short- or medium-range ballistic missiles launched against the U.S. overseas forces or America’s allies.

Such U.S. and allied missile defense efforts will create the foundation for a “system of systems.” And although the United States will contribute to each layer of a global missile defense system, it is likely that a logical division of labor will evolve in which the United States focuses primarily on space-based components while allies and coalition partners emphasize sea- and land-based systems. A system of systems will make it extremely difficult for an adversary to undermine U.S. crisis decision making by threats to launch ballistic missiles against either the United States, U.S. forces forward deployed, or America’s allies or coalition partners. Such an approach will reassure allies who otherwise might feel increasingly vulnerable to WMD and missile threats, including EMP attacks from ship-borne Scuds, as well as helping to dissuade states from developing nuclear weapons and their delivery systems by reinforcing U.S. extended deterrence.

II. What are the implications of the key alliance issues for overall U.S. national security?

Numerous implications for national security arise from the alliance issues raised in section 6. For example, regions of vital importance to the United States, particularly the Asia-Pacific area, the Middle East, and Europe, are becoming increasingly vulnerable to missile attack. North Korea and Iran are in the process of deploying nuclear weapons that will threaten other countries within and beyond their respective regions. Japan’s decision to move forward with missile defense was strengthened by the North Korean Taepo Dong ballistic missile test in 1998, together with the development of nuclear weapons by North Korea and the repeated inability of the international community to end North Korea’s nucle-
ar program. Moreover, Israel faces the threat of hundreds of Syrian short-range missiles. The United States seeks to prevent such proliferation and counter it. As reported in Section 6, Israel is deploying the Arrow missile defense system developed jointly with the United States. Israel is also developing defenses against short-range rockets such as those launched by Hezbollah in 2006. Against an emerging Iranian missile threat, Israel is planning to deploy a more advanced version of the Arrow system. It should also be noted that Aegis missile defense as well as space-based interceptors would greatly enhance Israel’s security against an Iranian missile threat.

In light of the growing threat from ballistic missiles, the United States, preferably with the support of allies, needs to deploy missile defenses as part of a broader non- or counter-proliferation strategy. As noted earlier, a global missile defense would also contribute to crisis management by demonstrating a capability to prevent a ballistic missile from reaching its target. Therefore, missile defense can contribute vitally to crisis escalation control and to preventing the outbreak of a crisis by demonstrating the futility of missile launches by a would-be aggressor. Ideally, such a capability should be space-based in conjunction with the ground- and sea-based missile defense assets supplied by both our allies and the United States and deployed to the crisis area. The space-based element, however, provides the greatest flexibility since in most cases it would already be in place, ready to provide boost-phase intercepts. The result would be a dampening effect on the crisis because an adversary would be unsure if his missiles would reach their targets. Thus a U.S.-allied system of systems would make it extremely difficult to undermine U.S. crisis decision making by threats to launch ballistic missiles against either the United States or its forces deployed abroad, or against the territory or forces of its allies or coalition partners.

III. What steps need to be taken with allies in light of these issues to achieve a global missile defense, both immediate and longer term?

Several steps must be taken to foster broader U.S.-allied collaboration on missile defense. These include building upon the existing ground- and sea-based missile defense capabilities of our allies to develop a global layered defense with an appropriate division of labor for U.S.-allied missile defense cooperation. For example, the jointly funded Japanese-U.S. effort to develop an interceptor compatible with existing Aegis infrastructure, particularly the 21-inch-diameter Standard Missile that fits in the existing Vertical Launch System deployed on about 100 U.S. and allied ships around the world, could be expanded to include other allies beyond Japan. Moreover, Australia plans to purchase three Aegis-class destroyers equipped with the latest combat systems. If it chooses, Australia could upgrade the system to participate in an international missile defense system. In addition to the 60 Aegis-class ships in the U.S. Navy, other countries, including Spain, South Korea, and Norway, operate the combat system. The United States needs to provide incentives to its allies to undertake modifications that allow anti-ballistic missile capabilities.

Another important step in this effort could include an international command and control system as well as allied financial contributions to the development and maintenance of a missile defense system. In addition, while facilitating technology-sharing with international partners, it is also critical to make certain that structures and procedures are in place to safeguard U.S. cutting-edge technologies.

However, the feasibility of such an approach remains to be seen, given the budgetary limitations of allied defense allocations and other issues (discussed below). The numerous issues of command and control, technology transfer, and burden sharing would have to be resolved; these are issue areas for more detailed consideration. To the extent that allies have technological capabilities that can contribute to missile defense, the basis exists to build an international consensus for missile defense.

Finally, simultaneously with the above efforts, the United States needs to educate allied officials and decision makers and their publics about the growing threats posed by WMD and ballistic missiles, the role missile defense systems can play to counter them, and why it is important to collaborate with the United States on anti-ballistic missile systems.

IV. What are the key obstacles to global missile defense, and how can they best be addressed and overcome?

Over the past several years, there has been growing allied recognition of the severity of the ballistic missile threat and that missile defenses are a logical response. This has been reflected in the decision to deploy a third ground-based site in Europe, with interceptors to be stationed in Poland and radars in the Czech Republic. It is also apparent in the strengthening U.S. missile defense cooperation with Japan as well as Israel’s focus on working with the United States on missile defense. As described above, this trend has helped foster international cooperation in the development of a layered global system to protect the United States and its allies against ballistic missile attack. Joint cooperative missile defense efforts also exist between the United States and several other nations, including Germany, Italy, the United Kingdom,
Denmark, Turkey, South Korea, Australia, and several Gulf Cooperation Council states. NATO is also exploring missile defense options.

Other key obstacles to broader allied participation in global layered missile defense apart from those highlighted above include a political mindset in allied countries against space that is an extension of such thinking in some influential quarters in the United States. The sources and nature of this opposition are discussed in greater detail in sections 4 and 5. Among the arguments is the assertion that by its own abstention from space-based missile defense the United States can somehow influence other nations to forego the opportunity to deploy capabilities in space. This is an argument that is largely without foundation. There is no historical evidence to support the proposition that a decision by the United States to abstain from space-based missile defense would lead to comparable actions on the part of others.

In fact, the contrary may be the case. In the absence of U.S. activity, space may seem increasingly attractive to other states, who might conclude that they could use space for their own purposes without fear of U.S. competition or retaliation. As pointed out elsewhere in this report, space has long been used for the transit of ballistic missiles, the first of which was developed by Nazi Germany, not the United States. In 1944, the V-2 rocket, a ballistic missile that eventually provided the basis for later-generation U.S. and Soviet missiles, was launched against targets in southern England, traveling part of its trajectory through the edge of space. Similarly, the first orbiting satellite was deployed not by the United States but by the Soviet Union in 1957. This suggests that, regardless of what the United States does, other states will exploit space for their own interests. As detailed in section 3, a growing number of countries already have space programs. If it moves to develop space-based missile defense, the United States should be aware that international opposition is focused more on American programs than on missile defense per se.

V. Are there opportunities that can be seized to press forward with a global missile defense?

Opportunities to move ahead with a global missile defense lie in the emerging threat environment that poses dangers not only to the United States, but also to its allies. In many cases we all face similar vulnerabilities, not only from missiles armed with WMD or even conventional warheads, but also from EMP, as described above and in section 1. This is a threat that will increase in the years ahead and against which a missile defense will be necessary as an important counter-proliferation capability. The United States has extended security guarantees to at least 30 countries. The ability to shield such countries from missile attack would reinforce these guarantees. However, if such guarantees erode in the years ahead, the incentive on the part of allies to acquire nuclear weapons may increase. We should be proactive in educating the public, in the United States and overseas, about the threats posed by ballistic missiles and the technologies that are already available, or which could be produced, to counter such threats in a timely fashion. This effort should emphasize the need to avoid arms control and other injunctions that might limit, politically or technologically, our ability to take fullest advantage of the means to protect the United States and its overseas interests from ballistic missile attack. As described earlier, the deployment by other countries of ground- and/or sea-based missile defenses could form the basis for a layered global missile defense. We should encourage and build on this foundation for allied missile defense cooperation.
Innovative development of technology to achieve significant and difficult goals requires visionary and persistent leadership, competent scientists and engineers, and the necessary resources to prove that new ideas can and will work—often in the face of repeated setbacks along the way. As discussed in section 4, these ingredients were present in sufficient quantities for the NASA's Apollo program to fulfill President Kennedy's vision—a non-partisan, politically viable goal. However, programs to deploy space-based defensive interceptors have not been politically viable—even though such programs also were consistent with the vision of another president—President Ronald Reagan—and technology challenges were met in the 1980s, in time to have realized his vision in the 1990s if Brilliant Pebbles, the most promising missile defense program, had been allowed to proceed.1

Furthermore, sustaining such excellence over extended periods is difficult even when initial efforts are successful—many would argue NASA today needs a revival of visionary leadership and innovative scientific and technical talent. It is virtually impossible when, as in the case of Brilliant Pebbles, conflicting political visions prevent a consistent sustaining science and technology effort. If innovation is desired, new talent must periodically be added and consistently supported in an environment that is set apart from the normal development and acquisition bureaucracy. The squeezing out of innovation is a fact of life in the evolution of all programs as management structures and technology mature.

On the Rise and Fall of Innovative Science and Technology

It has ever been thus in the field of military-technological affairs. Innovation has usually come because of focused efforts on the part of a very few extraordinary people, and as they pass from the scene innovation has given way to the usual risk-averse ways of bureaucracy. The history of science and technology (S&T) within the U.S. Air Force illustrates this evolution.

The legacy of General Henry H. (Hap) Arnold, uncontrovertably the father of the U.S. Air Force though it came into existence administratively after his retirement, was a major commitment to S&T. He gave top priority to research, development, and innovation. He established a strong alliance with famed aeronautical engineer Professor Theodore von Karman, who led the 1944 Toward New Horizons study that formed and documented the vision of the Air Force—notably including a major role for USAF S&T personnel. In his lead essay, which became the new service's blueprint in 1947, von Karman famously stated, “Scientific results cannot be used efficiently by soldiers who have no understanding of them, and scientists cannot produce results useful for warfare without an understanding of operations.”

Key to meeting this challenge in the 1950s and 1960s was General Bernard Schriever, USAF, who led the development of intercontinental ballistic missiles and many of the nation's early military space systems.2 Notably, General Schriever did not rely upon the existing Air Force systems acquisition organization, then centralized at Wright Patterson Air Force Base in Ohio, when undertaking the top priority ballistic missile program in 1954. Instead, he created a new West Coast organization; brought in a carefully selected, highly talented group of Air Force officers and contractors—often hired right out of college—and proceeded in less than five years to build the first operational intercontinental ballistic missile (ICBM).3 In many ways, accomplishing this feat at that time was more impressive than rapidly building an effective space-based interceptor system would be today.

General Schriever went on to apply an innovative approach to the development of all Air Force weapons systems. Key to his success was his creation of Air Force Sys

1 The challenge of building a viable space-based interceptor system was—and is—far less daunting than were the obstacles overcome in the eight years spent developing a program to land an American on the moon and return him to Earth.

2 General Schriever’s protégé, Lt. Gen. Sam Phillips, USAF, employed the skills he developed in directing the Air Force's ballistic missile and space programs to manage NASA's highly successful Apollo manned space-flight program.

An important June 12, 2005, House Armed Services Committee (HASC) hearing focused on these problems for space systems in particular. Among the many pertinent comments by the various participants, Dr. Peter Rustan, then S&T director for the National Reconnaissance Office and former program manager of the Strategic Defense Initiative (SDI) Clementine program, emphasized the key need for robustly funded and flexibly managed S&T efforts with substantial demonstration testing programs. Thomas Young, former Lockheed Martin CEO and chairman of a 2003 Defense Science Board task force that examined space acquisition problems, emphasized the need to restore within government a systems engineering capability “which had atrophied to basically zero.”

Of interest is that the Navy also lost its innovative edge over the Army – its edge no doubt sharpened in the early 1960s by the development of the Polaris submarine-launched ballistic missile in the space of about four years – following many of General Schriever’s management and technology innovations. Although such speculation may not be entirely justified, the suggested lack of innovation in Army systems might be correlated with the fact that the Army’s elite technical cadre specializing in building rockets was taken over by NASA and was subsequently instrumental in the historic and rapid Mercury, Gemini, and Apollo achievements of the 1960s.

A General Deterioration of Defense S&T Programs

Beyond these trends in eroding innovation in programs to build new military systems, there is on the horizon a serious problem in sustaining S&T excellence in the defense community. In his 2003 critique of a seriously deteriorating situation at defense laboratories in general and at the Naval Research Laboratory in particular, Don J. DeYoung concluded:

Should present trends continue, the Defense Laboratory will lose its competence as a performer of long-term, high-risk work. When that happens, the risks to future military operations will grow because its abilities to provide for America’s defense and respond quickly to crises will have passed quietly into history. Lost competence will also still the Pentagon’s strongest voice for independent, author-they were managed outside of the normal acquisition process.

6 It is notable that during that time, special programs – e.g., stealth, cruise missiles, Pershing II – markedly beat these timelines, but

Average Time: Program Start to Initial Operational Capability

- **Army**
- **Navy**
- **Air Force**

Average Just Less Than 10 Years

7 Hearing on Space Acquisition, Strategic Forces Subcommittee, House Armed Services Committee, July 12, 2005.
DeYoung’s concerns were not overstated, as was made clear by the above mentioned July 2005 HASC hearing on space acquisition. For over 15 years, key defense activities have been outsourced, allegedly to save money or because needed competence no longer existed within the Department of Defense. In many cases, such outsourcing has been justified, but in others it has been of dubious value and may have had costly consequences, as DoD’s competence to manage S&T efforts has atrophied. Increasingly, the Pentagon leadership is losing its ability to tell the difference between sound and unsound decisions on innovative technology and is outsourcing key decision making as well. General Lance Lord, USAF, commander of Air Force Space Command, acknowledged these problems at the HASC hearing on space acquisition and indicated that the Air Force is taking actions to reverse these trends.

Outsourcing government management responsibilities has not worked because America’s defense-industrial base is in trouble, too. Perhaps Stan Crock, Business Week’s chief diplomatic correspondent, overstated when he claimed in 2003, “While hardly anyone was watching, the infamous American military-industrial complex died,” and “Without a seismic change, the industry is headed into a death spiral.” But his numbers sounded an alarm:
- During the 1990s, the aerospace-defense workforce shrank from 1.3 million in 1989 to 689,000 at the end of 2002.
- Industry has handed pink slips to 10 percent of its workforce since September 11, 2001.
- Between 2002 and 2008, nearly half the industry’s workforce - what remains of the Apollo generation - will be eligible for retirement. This will mean the loss of unparalleled skill and experience, and potentially America’s technological edge.
- Between 1999 and 2000, aeronautical engineering degrees dropped from 4269 to 2142.
- The defense budget is about 3 percent of gross domestic product – about half what it was at the low-point of the Cold War.

The impact of these concerns is exacerbated as America’s high-tech supply chain, seemingly at an accelerating rate, moves offshore in the non-defense sector – the source of the commercial off-the-shelf technology upon which many key defense programs have come to rely. More and more U.S. companies are closing plants and relying on cheap labor overseas, in Eastern Europe and countries such as China, Mexico, Malaysia, the Philippines, and India. Increasingly, manufacturing and high-tech scientific jobs are moving offshore as well. As discussed in section 8, American universities, while still the world’s leaders, may not produce the needed scientists and engineers to retain U.S. global technological leadership into the indefinite future – demographic trends suggest a looming problem of strategic proportions. The result is that the United States will be increasingly de-
dependent on overseas suppliers that might not be available in a protracted crisis or wartime situation.

The Pentagon’s ability to exploit innovative technology to build effective defenses is at grave risk because of the trends mentioned above, and because of a lack of institutional memory owing to the 1993 political disruption to the cutting-edge SDI developments. The legacy of this lack of continuity continues to be particularly troublesome because key advanced technology has become increasingly available to friend and foe alike, even though the Pentagon apparently judges it to be too risky to be applied to develop U.S. missile defenses.

As a Defense Science Board panel noted in its 2007 report, 21st Century Strategic Technology Vectors, the decentralized and dispersed DoD management of science and technology has left the department with risk-averse and underfunded S&T programs, such as are needed to minimize the risk in developing innovative space systems as was done in the 1960s and 1970s. These conditions no doubt contribute to the DSB’s conclusion that U.S. strategic technology advantages are eroding. Although the DSB did not make the observation, the 1993 cuts (from approximately $1.5 billion to approximately $50 million) to the annual funding for missile defense S&T programs during the SDI era (1984-92) undercut the subsequent development of truly effective missile defenses—a shortcoming that has not been rectified and continues to hamper development of truly effective missile defenses today.

Innovation Needs for Future Missile Defenses

A lack of institutional memory regarding the state of fundamental technology was illustrated in 2003 by delays in the minimally funded space-based boost-phase interceptor program, because of alleged “major technology challenges” including a claimed need to learn how to miniaturize satellite components. But as discussed in appendix B, the Chinese were then building miniaturized micro- and nano-satellites, exploiting the SDI technology base developed and demonstrated in space during the Reagan-George H. W. Bush era. Nigeria launched its first satellite in 2003, using microtechnology from Surrey Satellite Technology, also a source of technological advances in China. Furthermore, all of the key technologies to support building a space-based interceptor system available over 15 years ago were demonstrated to the whole world in the prize-winning Clementine mission of 1994, and could be revived and deployed as a force-in-being within five years. Needed is an innovative technical team of the sort assembled by General Schriever in the 1950s to overcome much more daunting technical challenges and build the first ICBM in under five years.

President Reagan’s March 23, 1983, speech launched the Strategic Defense Initiative, and Secretary Weinberger assembled the resources to pursue the president’s goals. In particular, he selected Lt. General James A. Abrahamson, USAF, an aeronautical engineer who had successfully managed development of the F-16 and the early flights of the space shuttle, to lead SDI. General Abrahamson assembled a first-class technical team and challenged them to answer President Reagan’s call to evaluate the national technology base and determine how to build upon it truly effective defenses against long-range missiles.

At Secretary Weinberger’s direction, General Abrahamson formed the initial SDI effort from existing technology programs (funded at approximately $1.5 billion in 1984), previously managed by the Defense Advanced Research Projects Agency (DARPA) and the armed services. Drawing on advice and support from the nation’s top technologists, he molded these existing S&T efforts into a ballistic missile defense “mission-focused” SDI program. SDI technologists maintained this focus through the Bush-41 administration even as their budget tripled to include additional S&T efforts aimed at demonstrating technology needed for effective defense against long-range missiles.

At Secretary Weinberger’s direction, General Abrahamson formed the initial SDI effort from existing technology programs (funded at approximately $1.5 billion in 1984), previously managed by the Defense Advanced Research Projects Agency (DARPA) and the armed services. Drawing on advice and support from the nation’s top technologists, he molded these existing S&T efforts into a ballistic missile defense “mission-focused” SDI program. SDI technologists maintained this focus through the Bush-41 administration even as their budget tripled to include additional S&T efforts aimed at demonstrating technology needed for effective defense against long-range missiles.

15 See Defense Science Board, 2006 Summer Study on 21st Century Strategic Vectors, vol. 3, Strategic Technology Planning (February 2007), and vol. 4, Accelerating the Transition of Technologies into U.S. Capabilities (April 2007), http://www.acq.osd.mil/dsb (as of November 19, 2008). A notable observation was that major commercial companies invest more of their discretionary resources in S&T than the Department of Defense does.

18 The Brilliant Pebbles space-based interceptor program became SDI’s first fully approved major defense acquisition program in 1990, and had it been fully supported without the political burdens from those opposed to “weapons in space,” it could have been operational as early as 1996. See Donald R. Baucom, “The Rise and Fall of Brilliant Pebbles,” Proceedings of the International Flight Symposium, sponsored by the North Carolina First Flight Centennial Commission, October 23, 2001.
tive defenses and to initiate serious military-acquisition programs as the technology was proven.

But in 1993, the Clinton administration renamed and re-oriented the SDI program, cut its budget by 50 percent and purged the Clinton Ballistic Missile Defense program of the most advanced technology and those who were its advocates – Defense Secretary Aspin boasted they were “taking the stars out of Star Wars.” The space-based interceptor effort and its supporting S&T programs were scuttled entirely, and the most advanced technology produced by the $30 billion investment of the SDI era was lost. In particular and as noted previously, the baseline ~$1.5 billion per year investment in demonstrating key defensive technology was cut to ~$50 million per year, dead-ending steady advances of many DARPA and armed services programs that SDI had absorbed a decade earlier.

Most of the technically elite missile defense cadre then in government and industry left for “greener pastures,” and administrators rather than S&T technologists ascended to power in the Pentagon’s missile defense programs. Reviving cutting-edge technologies demonstrated in the mid-1990s is impeded by a near-total lack of institutional memory, pervasive aversion to risk, and the legacy of over three decades of the ABM Treaty-related political constraints that sharply circumscribed engineering possibilities and even basic concepts, as discussed in section 4.

For example, Brilliant Pebbles technology was developed in the late 1980s and early 1990s. As described in section 4, Brilliant Pebbles was the first SDI program to be approved as a major defense acquisition program by the Pentagon’s acquisition bureaucracy in 1991. After the program was scuttled in 1993, all first-generation Brilliant Pebbles technology was space-qualified in 1994 on the award-winning Clementine mission to the moon and on an Astrid flight (See appendix I). Since then, there has been no sign of efforts to use those technology innovations even to enhance sea-based or other missile defenses, let alone to revive the Brilliant Pebbles space-based interceptor program.

With little institutional memory and few directly relevant technological credentials to develop independent judgments regarding even decade-old cutting-edge technology, current missile defense administrators rely on a business-school mentality and essentially have turned advanced thinking over to industry – which in turn is focused on the poor health of its bottom line, as discussed above, and the moment-to-moment satisfaction of their government customers.

Principal elements of the Clinton program – which gave priority to preserving and strengthening the ABM Treaty that banned effective ballistic missile defenses of all types – undeniably remained through the Bush-43 administration as the primary focus of the Pentagon’s missile defense programs, though at twice the annual funding rate as during the Clinton administration. By January 2009, 24 ground-based interceptors were deployed at Ft. Greely Alaska, and 6 deployed at Vandenberg AFB, California, as noted in section 2.

Such ground-based defenses are the most expensive and least effective way to attempt to defend against ballistic missiles – hence, industry will resist efforts to move to less expensive systems (even when they are more effective) because that reduces their profits. Unless management steps similar to those of the Air Force in the 1950s are taken, this recipe will lead to a “death spiral” for creating effective defenses.

The development of these defenses has been focused on defeating the less demanding ballistic missile capabilities of rogue states such as North Korea and Iran. However, it is only a matter of time before these states achieve the more advanced countermeasures employed by Russia and increasingly China. Already it is clear that rogue states understand the fundamental and currently quite affordable way to defeat these limited defenses – as evidenced by North Korean and Iranian tests involving multiple missiles that can overcome limited defenses against short- and medium-range missiles. Less expensive defenses will be required to build a capability to overcome such “barrage” attacks (as of November 19, 2008), and CNN, “North Korea test-

19 For a discussion of the S&T developments during the Reagan-Bush 41 SDI era, see James A. Abrahamson and Henry F. Cooper, What Did We Get for Our $30 Billion Investment in SDI National Institute for National Policy, September 1993, http://www.nipp.org/Adobe/What%20for%20830B_.pdf (as of November 19, 2008). See also Henry F. Cooper, “End of Tour Report,” January 20, 1993, for an accounting of the state of affairs at the outset of the Clinton administration, including the then-approved budget throughout the rest of the 1990s.

20 Fully approved acquisition programs absorbed much of the budget cut, for example, the congressionally mandated program to build ground-based interceptors to protect the U.S. homeland was cut by 80 percent. The Clinton administration’s designated “top priority” theater defense programs were cut by 20 percent.

21 A notable opportunity was missed when the lightweight kill vehicle technology of the Brilliant Pebbles program was not exploited to build an advanced technology kill vehicle (ATKV) with both axial and transverse propulsion capability for deployment on the Navy’s Standard Missile-3 (SM-3). Had that development been adopted seven or eight years ago, as proposed by the Navy, the Block IA and IB versions of the SM-3 could have provided significant capability against ICBMs. As it now stands, the Block IA will employ less capable technology and may be inferior to the Block IB with that ATKV capability.

Kelly Johnson’s Recipe for Operations of the Lockheed Skunk Works

- Program manager must be delegated practically complete control of his program in all aspects. He should have authority to make quick decisions regarding technical, financial or operational matters.
- Strong but small program offices must be provided by the military and industry.
- The number of people having any connection with the project must be restricted in almost a vicious manner. Use a small number of good people.
- Very simple drawings with great flexibility for making changes must be provided in order to make schedule recovery in the face of failures.
- There must be a minimum number of reports required, but important work must be recorded thoroughly.
- There must be monthly cost review covering not only what has been spent and committed, but also projected costs to the conclusion of the program. Don’t have the books ninety days late and don’t surprise the customer with sudden overruns.
- The contractor must be delegated and must assume more than normal responsibility to get good vendor bids for subcontract on the project. Commercial bid procedures are often better than military ones.
- The inspection system as currently used by the Skunk Works, which has been approved by the Air Force and the Navy, meets the intent of existing military requirements and should be used on new projects. Push basic inspection responsibility back to the subcontractors and vendors. Don’t duplicate so much inspection.
- The contractor must be delegated the authority to test his final product in flight. He can and must test it in the initial stages.
- The specifications applying to the hardware must be agreed to in advance of contracting.
- Funding a program must be timely so that the contractor doesn’t have to keep running to the bank to support government projects.
- There must be absolute trust between the military project organization and the contractor with very close cooperation and liaison on a day-to-day basis. This cuts down misunderstanding and correspondence to an absolute minimum.
- Access by outsiders to the project and its personnel must be strictly controlled.
- Because only a few people will be used in engineering and most other areas, ways must be provided to reward good performance by pay and not based on the number of personnel supervised.

(LtCol J. Douglas Beason, DoD Science and Technology for Past Cold War: A Case for Long-Term Research, Industrial College of the Armed Services, National Defense University, May 28, 1996.)

tack scenarios, and more effective defenses will be needed to defeat more advanced countermeasures already existing in other states. If such effective defenses are developed, they will be a disincentive to proliferation of advanced ballistic missiles and offensive countermeasures. As argued in earlier sections, the most cost-effective missile defense concepts are space-based.

Needed: A New Effort for Innovative Missile Defense Technology

Persistent visionary leadership is what is now needed to change course. The enabling technology is viable – it was space-demonstrated in 1994. Needed now is a classic small, highly competent government and industry effort charged with rapidly reviving and deploying that technology after the fashion that has so often succeeded in the past – and epitomized by the recipe for successful operations defined over 50 years ago by Kelly Johnson of Lockheed “Skunk Works” fame (see table above) and exploited by General Schriever in his ballistic missile and space programs. Of particular importance is a very small, empowered, technically competent management and engineering team from government and industry, fully supported with needed funds and “high cover” to minimize the bureaucratic kibitzing and mission creep.

Just as General Schriever started fresh with his innovative and successful effort to develop the first ICBM in under five years, a new organization should be given the task of developing space-based interceptors by employing technology and engineering skills not currently evident within the Missile Defense Agency (MDA). A special project office should be formed and manned with personnel skilled in developing innovative technology, perhaps under DARPA, working closely with the Air Force Space Command to frame a comprehensive program to revive key technology and concepts demonstrated over a decade ago.

As suggested by the above figures, the needed level of funding would be a significant percentage of the DARPA budget, which has been basically flat in recent years while the service S&T budgets have grown or held steady. It would not be out of line with other DARPA projects that have led to major improvements in defensive capabilities, especially if conducted jointly with and partially funded through the Air Force. Also evident from the above figures is the gradual rise and then plateau of the defense S&T investment beginning in the mid-1990s. Over the same period, the total defense R&D portfolio grew dramatically on the strength of the development account. The balance between S&T and development investments is a related matter of concern to Congress that could be at least partially rectified by the initiative suggested above. The Defense Science Board sounded an alarm in 1998 about the negative impact of this reduction. The DSB found that, on average, ...

23 In the above figures, most of the Missile Defense Agency’s funding during the past 8 years was carried as R&D, a misleading characterization because most such funds were to support an acquisition strategy for a limited defense rather than to develop truly effective defenses. As noted previously, the $1.5 billion being spent by the SDI program for traditional R&D programs was in 1993 cut to about $50 million and has since remained a small percentage of the Missile Defense Agency’s budget.

high-technology companies invest 3.5 percent of their total sales in R&D, but the amount of the president’s budget invested in defense S&T was less than 3 percent of the overall DoD budget, which the DSB recommended as a goal. General Hap Arnold would no doubt have supported a return to his vision that recognized major S&T investments as crucial to the nation’s defense.

While Bush administration officials early on stated that 3 percent was their goal and the 2001 Quadrennial Defense Review even explicitly called for it, their budget requests and subsequent actions showed less support for the explicit metric. Indeed, the 2005 version of the QDR did not reference the 3 percent goal. The Bush administration’s budget requests typically reduced or held funding flat for defense S&T. According to the American Association for the Advancement of Science’s (AAAS) analyses of the DoD R&D budget, “In what now has become an annual ritual, the Pentagon proposes sharp cuts each year in S&T funding and Congress adds billions of dollars in the appropriations process...” In 2001, DoD S&T investment totaled $11.15 billion (constant FY 2008 dollars). Investments in S&T rose steadily to a peak of $14.48 billion in 2006 before sliding back to $11.14 billion in the FY 2009 request. When the Congress completed the FY 2009 defense appropriation, it increased the S&T account to $14.3 billion.

Providing the Scientists and Engineers for the Future

The exodus of human capital from the aerospace industry is further exacerbated by broader trends in the science and engineering education sector. Enrollment in U.S. graduate programs in science and engineering continues to rise steadily, which is a trend that began in 1999 and peaked in 2005, according to the National Science Board’s Science and Engineering Indicators. A closer look at the trends shows that this does not hold for engineering and computer sciences. Both disciplines saw declining enrollments beginning in 2002-03, due in large part to restrictions imposed on foreign students after September 11. Foreign graduate student enrollment drove the increase in students studying in these disciplines, as shown in the chart below. The number of foreign students in science and engineering grew from 79,900 in 1985 to 154,900 in 2003 before declining through 2005. The number of foreign students increased from 20 percent to 25 percent of all science and engineering graduate students from 1985 to 2005. The concentration of foreign enrollment was highest in engineering (45 percent), computer sciences (43 percent), physical sciences (40 percent), and mathematics (37 percent).

These trends look even more troubling when juxtaposed with astonishing increases in advanced degrees being awarded in some foreign countries. For example, between 1991 and 2001, science and engineering PhDs in China and South Korea rose by 535 percent and 150 percent, respectively.

25 The American Institute of Physics Bulletin of Science Policy News, no. 50, April 26, 2002, reported that Under Secretary of Defense Pete Aldridge testified that the DoD’s five-year plan projects an increase in the S&T budget “to approach 3 percent of the DoD budget.”

eign students who for years have made up a major percentage of U.S. graduate school classes now increasingly obtain their advanced degrees at home, as seen in the accompanying chart. In particular, China's burgeoning store of advanced science and technology capability is sobering, from both economic and military perspectives — and not only at the graduate level. This article claimed that China would graduate over 600,000 engineers in 2006, the United States about 70,000. Fortune noted that "Our universities are still excellent, but the foreign students that come to them are increasingly taking their educations back home. As other nations multiply their science and engineering graduates — building the foundation for economic progress — ours are declining." While these specific numbers have been disputed, there is little to argue with the trends suggested by the Fortune article and the fact that the demographics are against the United States in the world's marketplace.

For example, in their comprehensive analysis, the National Academies’ Committee on Prospering in the 21st Century observed that American twelfth-graders performed below the international average of 21 nations on a test of general knowledge in mathematics and science. Furthermore, after secondary school, fewer U.S students pursue science and engineering than in other countries. About 6 percent of U.S. students pursue engineering, the second-lowest percentage among developed countries, compared to 12 percent in Europe, 20 percent in Singapore, and over 40 percent in China. The committee’s executive summary emphasized as its primary finding that “the scientific and technological building blocks critical to our economic leadership are eroding at a time when many other nations are gathering strength.” Furthermore, they observed that they feared “the abruptness with which a lead in science and technology can be lost – and the difficulty of recovering a lead once lost, if indeed it can be regained at all.”

As concluded by the National Academies’ Committee on Prospering in the 21st Century, these and other sobering trends, coupled with the aging and atrophy of the base of scientists and engineers upon which viable military and civil space programs rely, suggest a requirement to reenergize our colleges and universities to support these future needs. Efforts to do so now — in a new situation where the U.S. government is committed to reinvigorating its space and defense technology programs — would be met with approval on our campuses, unlike in the not-so-distant past.

The important role of space technology in the post-9/11 world is easily understood in terms of practical military missions and integrated into a vision of a needed systems' "brilliance" that can capture the interest and imagination of today's science and engineering students and their...
fessors. While x-ray lasers from space may have once excited engineering and science students in the first years of SDI promise, today’s counterpart is stimulated by space and land-based “smart” weaponry in operations from Kabul to Baghdad. There had been no 9/11 when SDI was launched. The new defense requirements stimulated by 9/11 provide a new incentive for university science and technology graduates to choose careers that include missile defense and space security.

Our universities are the source of a vast pool of talent and other resources to help meet the technology innovation challenges of the twenty-first century. Efforts should be made to revive federal support of physical science research and engineering, which have sharply declined relative to biomedical research in the last decade. Restoring a comparable level of such funding is imperative if we are to remain on the cutting edge of innovative defense technologies.

Summary Conclusions and Recommendations

Innovative development of technology to build effective ballistic missile defenses, especially those based in space requires visionary and persevering leadership at the political level. That leadership existed for the *Apollo* program; it did not for the SDI program – even though popular presidents of the United States initiated both and both developed the needed technology to pursue the initial vision in a timely way.

The history of major technological developments has repeatedly demonstrated that such creative development can be achieved by establishing a new organization, separate from the normal development process, staffing it with competent scientists and engineers, and giving them the necessary resources to make needed investments without interference from excessive bureaucratic oversight. This worked with the Manhattan Project, which produced the atomic bomb in less than four years; *Corona*, the project that produced America’s first spy satellites, the ICBM, and the submarine-launched ballistic missile (SLBM) programs; NASA’s *Apollo* program; the “stealth” programs, the cruise missile *Pershing* II; and a host of other efforts of national importance.

History also shows that when the groups that demonstrate such creativity either become or are absorbed into large bureaucratic institutions, their impact diminishes and is often lost after a limited period of time as the administrative processes of acquiring and operating major systems dominate the pursuit of resources and careers. From time to time, enlightened leadership must infuse new talent with needed resources in new organizations if new ideas are to prevail. Such an infusion of new talent is needed today to provide the innovation required to build highly effective missile defenses.

Thus, we recommend that such a Special Project Office be established, perhaps as part of the Defense Advanced Research Projects Agency, to revive the innovative technology that will enable development and deployment of an operating constellation of space-based interceptors within five years. Based upon the technology developed and the system concept critically reviewed and approved by numerous critical groups during the SDI era – including formally by the Defense Acquisition Board – such an operating defensive constellation of 1,000 space-based interceptors could be developed, tested, built, and operated (for 20 years) within a three- to five-year period for $11 billion in 1989 dollars, or $19.1 billion in 2008 inflation-adjusted dollars (See table 2.2).

This same technology will undoubtedly provide block improvements to ongoing missile defense development activities. For example, the lightweight kill vehicles enabled by the cutting edge work on space-based interceptors can enable more cost-effective sea-based and ground-based interceptor systems. Thus, while this new Special Project Office should focus on building space-based interceptors, it should maintain a liaison with the MDA and the armed services, but should not be distracted from building a space-based interceptor system as quickly as possible.

A related matter is the need to revive the interest in space and defense technology in our colleges and universities – and even in our primary and secondary educational system – to assure a viable cadre of engineers and scientists into the indefinite future. We recommend that the NSF be reorganized to support funding of space security research under specific budgetary authority. This follows the successful
Panel 7 Report

With section 7, “Requirements to Revitalize Science and Technology,” as background, members of panel 7 discussed the status of the U.S. science and technology base and its implications for America’s ability to develop, deploy, and evolve a layered missile defense encompassing space-, sea-, and ground-based intercept capabilities.

Panel Members
Chair: Ambassador Henry F. Cooper
Mr. John H. Darrah
Dr. Daniel I. Fine
Dr. William R. Graham
Dr. Jack Hammond
General Bernard Schriever, USAF (Ret.)†
Dr. William R. Van Cleave
Dr. Lowell Wood
† deceased

I. What are the implications of the key issues raised in section 7 for missile defense, and specifically for space-based missile defense, as we look beyond 2008?
The scientific and technical base on which rests the development of truly effective missile defenses is steadily eroding. In particular, the critical knowledge and expertise available almost 20 years ago in programs to develop and deploy an effective space-based defense have essentially disappeared. No significant space-related program has been completed expeditiously in recent memory.

Because of the erosion of the S&T funding base in general, the quality of human capital in the aerospace sector is lower than it was two decades ago, leading to a decline of innovative government and industry in the defense and space sectors and a similar decline in the capabilities of universities. As the competence of government management has declined, streamlined and accountable management has been replaced by a process-oriented bureaucratization of the S&T and acquisition process. Highly successful programs in the 1950s and 1960s were managed by small, technically competent teams with authority and responsibility to develop, test, and deploy major systems in significantly less than half the time of today’s intended schedules. Present-day programs are too often run by individuals lacking the necessary technical credentials to manage such accelerated programs.

As a result, there is a low probability that space-based defenses will emerge without external intervention. This would involve conducting a space-based defense development program within an organization such as the Defense Advanced Research Projects Agency (DARPA) more inclined than the Missile Defense Agency (MDA) to innovation. Such an initiative might also encourage basic research on missile defense- and space-related technologies at university campuses, which are now less ideologically opposed to “militarization of space” arguments that carried so much weight when the Strategic Defense Initiative program began 25 years ago.

II. What are the implications of the key issues raised in section 7 for overall U.S. national security?
As stated in earlier sections, space-based defenses are essential if the United States is to have a truly effective defense against ballistic missiles. Until there is an initiative to restore the key S&T base, it is unlikely that space-based defenses will be developed and deployed.

In general, the erosion of the defense community’s S&T base undermines the prospects not only for effective ballistic missile defenses, but also for innovative improvements in other space system capabilities such as are needed for space control missions, assured access to space, miniaturization, and so on. The decline of our S&T base creates a serious national security problem in government, in the defense industry, and in our universities.

III. What steps need to be taken in light of these issues to achieve space-based missile defense, both immediate and longer-term?
If it were politically possible, the United States should immediately reconstitute the cadre of scientists and engineers who worked on the Brilliant Pebbles program, provide them with the necessary resources, and let them get back to work. Unfortunately, such a development is unlikely in the current political climate.

To break the existing mindset, a sense of urgency is needed, inspired by greater recognition of the nature of threats and peer groups with expertise that would evolve with the technology as part of a new, collegial missile defense science and technology community.
facing the United States, and articulated by the uppermost levels of government. It would be preferable that this sense of urgency were in response to understanding that a growing threat warrants building truly effective global missile defenses, space control systems, and so on, that can be accomplished best by space-based defensive systems.

Presidential level direction is an important element in this calculus. As was demonstrated by President Eisenhower’s successful development of intercontinental ballistic missiles, only leadership from the highest levels is sufficient to:

1. Break through the bureaucratic impediments at the Missile Defense Agency to initiate development of a space-based defense
2. Educate the public about the threats posed by ballistic missiles, the consequences of failing to erect a defense, and the importance of space-based defense in the missile defense system

Presidential leadership, therefore, is needed to raise the priority of space-based defense. Regrettably, it is unlikely that this need will be recognized before some tragic event makes it abundantly clear that such truly effective defenses are urgently needed. Then, a serious question will be whether the S&T community can move quickly to provide such a capability quickly in the face of that clear requirement.

If such an event were to occur and the president then wishes to move rapidly to build truly effective defenses, the government’s ability to do so would become the key issue. His priority decisions then must also be amplified by additional spokespersons at the federal level. Since the MDA has not taken the initiative to invest in technology to enable space-based defense, other government entities should be prepared to take the lead, including Air Force Space Command, the Office of Science and Technology Policy, and the Office of Management and Budget, which could provide policy and resource leadership. In addition, innovative programs at DARPA could play a key role in assuring that technology is available to support the rapid development of space control and space defense systems.

IV. What are the key obstacles to space-based missile defense and how can they best be addressed and overcome?

The primary obstacle to establishing a viable program for space control and space-based defenses is political, not technical, even though much must be done to revive the technology base that was available twenty years ago to support building such systems.

Since the primary obstacle is political, it must be met in the political arena, preferably before a disaster makes our vulnerability apparent and forces the United States to deploy effective space-defenses. The initiatives suggested above could exploit the increasing efforts among state legislatures to raise awareness of the threat posed by ballistic missile proliferation, the vulnerability of the American people to this threat, and the viable options to defend against that threat. An informed general public will be far more likely to voice support to politicians for the development and deployment of effective missile defenses, including a space-based component.

A major objective should be to avoid arms control and/or other constraints that would limit engineers in designing, developing, testing, and deploying truly effective missile defenses, including in space. We need to avoid another agreement like the ABM Treaty, which frustrated even thinking about the most effective defenses for many years; regrettably its legacy continues to limit the imagination today.

Until serious programs can be undertaken to develop space-based defenses, a “safeguard” S&T effort should be undertaken to assure that key technology is available to support building the most effective defenses permitted by technological rather than political limits. This can be done so that other defense basing modes also benefit; for example, lightweight components that are essential for building cost-effective space-based defenses will also benefit ground-based and sea-based defenses.

V. Are there opportunities that can be seized to press forward with space-based missile defense?

Several opportunities exist for advancing the case for space-based defense. The first is the growing appreciation of the importance of space to U.S. national security. The exemplary performance of the U.S. space-based assets during U.S. campaigns in Afghanistan and Iraq can and should be leveraged into a public policy opportunity. Notably, the space assets that were critical in the success of those engagements have so far not been valued in their own right, but rather for their complementary roles in support of other systems or mission tasks. Nevertheless, the opportunity exists to underscore the centrality of space to U.S. national security and the role space-based defenses will have to play.

The National Security Presidential Directive of August 31, 2006, “U.S. National Space Policy,” reaffirmed the vital importance of space to national security, economic well-being, and technological advancement that has been set forth by administrations beginning with the Eisenhower era. The United States is more dependent than any other nation on space for scientific, civil, military, and intelligence purposes. This dependence will grow in the years ahead at a time when other nations are pursuing their own space programs. For example, China is engaged in an extensive strategic mod-
ernization effort that includes a range of space-denial systems, together with satellites and lift capabilities that will enhance China’s ability to operate in space. The direct-ascent launch of January 2007 provided evidence of Beijing’s efforts to restrict the use of space-based assets by the United States in a future crisis.

U.S. space-based missile defenses would be fully compatible with the U.S. National Space Policy, which calls on the secretary of defense to develop capabilities, plans, and options to ensure U.S. freedom of action in space and to deny such freedom of action to adversaries when necessary. This requires effective deterrence and defense, including space capabilities to support a multi-tiered and integrated missile defense.

Building on the U.S. National Space Policy directive of August 2006, the secretary of state’s bipartisan International Security Advisory Board (ISAB) produced a unanimous report, which contained several recommendations that, if implemented, could contribute to building broader sustained support for, and understanding of, vitally important space programs.35 The ISAB recommendations emphasized the need for robust public and international diplomacy efforts to promote space policy, including:

- U.S. national security space programs should be re-energized in accordance with the new space policy directive and their budgets increased.
- The Department of State should emphasize current and expanding threats to space assets as an essential part of its international diplomacy.
- The Department of State in its diplomacy should support the right of the United States to explore the potential of space-based defenses without international restrictions.
- The Department of State should undertake neither treaties nor formal or informal codifications related to activities in space if they are inconsistent with the national space policy. Diplomacy should vigorously explain and support the space policy.

The sustained development of national security space programs can contribute directly to technologies that enhance other defense programs, just as other defense programs can enhance missile defenses in space. For example, small lightweight technologies needed to build the most effective sea-based defenses also have direct application to a space-based defense. This makes it possible for the U.S. Navy to benefit from an interceptor missile compatible with its existing Vertical Launch System (VLS) infrastructure, rather than building a larger interceptor requiring a new VLS tube and an expensive Navy retrofit program in order to develop a boost-phase intercept capability. As discussed elsewhere in this report, a boost-phase missile defense is essential to enable the United States to counter emerging missile threats.

One effect of the 9/11 terror attacks was a change in attitudes on college campuses among students. Anti-defense stances frequently found among faculty members are not as prevalent among students today, who may be increasingly prepared to make a contribution to defense. This suggests that if the U.S. government were to organize a new research and development program focused on developing innovative ideas to exploit space and space defense, a cadre of students would be interested in working in those areas. Such a program would help to replenish the badly deteriorating workforce of scientists and engineers in the aerospace sector.

Specifically, the United States needs to restore federal support for, and funding of, physical science research and engineering at least to the level currently received by biological research. At a minimum Department of Defense S&T funding should reach 3 percent of total defense spending. In order to revive interest among students and faculty in space and defense technology in U.S. colleges and universities, the National Science Foundation should be reorganized to support funding of space security research under specific budgetary authority following the NSF model for materials science research. Similar to the materials science model, a program of research funding solicitations and awards in missile defense-related S&T should be developed. Moreover, the missile defense component of space security research should be supported by advisory and peer groups with expertise that would evolve with the technology as part of a new missile defense science and technology collegial community.

On U.S. campuses, we need to increase emphasis on S&T in the curriculum as a way of strengthening the U.S. science, technology, and engineering base and offer research opportunities in the development of missile defense and space security technologies to emerging scientists. Finally, we should more actively encourage the publication of S&T research in a way that fosters a sustainable and vibrant academic research community but safeguards sensitive data from improper dissemination. For example, sensitive research could follow the private-sector industrial sponsored research model of establishing parameters on a “black box” (no identification) in which critical measurements are performed.

Conclusions & Recommendations

The United States today stands at a crossroads. The threat environment facing America today is radically different and more complex than that of just a decade ago. A multitude of dangers have emerged, with the proliferation of ballistic missiles and weapons of mass destruction presenting a grave and growing threat to the security of the United States, its deployed forces, and international partners. This concluding section first summarizes the ballistic missile threat and then sets forth a series of recommendations for missile defense to address this threat. Finally, it discusses the elements of a strategy to enable the United States to deploy a missile defense adequate for the challenges ahead.

The breadth and sophistication of the threat facing the United States requires an equally complex and effective response – one that is capable of deterring aggression, dissuading potential adversaries, assuring our allies, and defending the United States against dangers that it cannot deter. In cases where an adversary might not be deterred by the threat of retaliation, missile defense becomes indispensable. It is especially important to be able to destroy a missile early in its trajectory either in boost phase (before boosters are cut off) or after cutoff and before warhead release (ascent phase). However, the United States has stopped short of applying these principles to the creation of a comprehensive layered system capable of both global monitoring and global defense against ballistic missile attack.

Even with the U.S. withdrawal in 2002, the ghost of the Anti-ballistic Missile (ABM) Treaty and the doctrine of Mutual Assured Destruction or MAD continue to restrict America’s ability to develop and deploy the most effective options available for missile defense. The Ground-based Midcourse Defense (GMD) system that is being deployed is based largely on technologies developed before the ABM Treaty was abrogated. This capability in itself will not be adequate to meet the growing challenges of ballistic missile proliferation, much less the more numerous and sophisticated threats of Russia and China. As noted in this report, the development of a layered missile defense relies heavily on the ship-based systems now being deployed that are equipped with the Standard Missile and Aegis combat system. This program has now had a long list of testing successes, with deployment proceeding. However, the harmful vestiges of the treaty and MAD are particularly apparent with regard to space-based missile defense, which is the most promising and technologically feasible option and would serve as the centerpiece of a truly effective global layered missile defense that includes a boost- or ascent-phase capability. The leverage offered by such an intercept from space was first identified in the Defense Advanced Research Projects Agency’s seminal study of missile defense entitled Project Defender as long ago as 1960.

This state of affairs has disturbing implications for America’s national security and its international role in the decades ahead. Without an effective means to dissuade, deter, and defeat a growing number of threats, the United States will be unable to maintain its global leadership. The creation of effective defenses against ballistic missile attack is central to this task. New momentum and direction are needed in the pursuit of a truly global layered missile defense capability that incorporates space-based interdiction capabilities. Such an approach encompasses a series of concerted and concurrent political, technical, and organizational measures.

The Problem: An Existing and Escalating Threat

The proliferation of ballistic missiles and weapons of mass destruction poses a serious and growing threat, including the following:

- States such as North Korea and Iran are working hard to acquire (or already possess) WMD and the means to deliver them. North Korea already possesses several nuclear weapons and has made major advances in the development of its ballistic missile capabilities. North Korea is also a proliferator of WMD/ballistic missile know-how as well as technologies and components. Iran is increasing the range of its Shahab ballistic missiles and is aggressive-
ly pursuing a nuclear program to produce nuclear weapons. In addition, Iran is reported to have test-launched a Scud from a surface ship and conducted tests that could give that country an electromagnetic pulse capability.

- Strategic competitors Russia and China also are extending the sophistication of their strategic arsenals in terms of warhead accuracy, countermeasures, and delivery systems. For example, Moscow is developing the Topol ICBM with several variants, including models with a multiple independently targetable reentry vehicle (MIRV) capability as well as a sea-based version. Beijing is developing MIRV technology to defeat anti-missile systems for use on the Dong-feng 31 ICBM. Moreover, in 2003 China became the third nation with a manned space flight program, underscoring its objective to challenge the United States in space. This has been followed with further space tests, including the destruction of a Chinese satellite in January 2007 and a space walk in October 2008.

- A number of terrorist groups are making concerted efforts to obtain WMD that would enable them to conduct chemical, biological, radiological, or nuclear attacks. Al-Qaeda is reported to be seeking nuclear and chemical weapons to attack the United States. For example, a Scud missile armed with WMD could be launched by terrorists (or other U.S. adversaries) from ships off U.S. coasts. This threat, which would not be countered by the GMD system presently being deployed in Alaska and California, puts at risk the U.S. population living within several hundred kilometers of our coastline. It could be countered by sea-based or space-based defenses.

- A nuclear detonation over or near the United States launched by a missile designed to explode its warhead at an altitude of between 40 and 400 kilometers would create an electromagnetic pulse (EMP) that could shut down all or a major portion of the U.S. power grid, communication networks, and other critical infrastructure dependent on sophisticated electronics and computers. This might include U.S. financial markets, transportation systems, and food distribution networks. An EMP attack would create havoc resulting in major national and international economic consequences. U.S. satellites, both civilian and military, are vulnerable to such attacks, especially in low-earth orbits. The current missile defense deployment does not adequately address this threat.

- Finally, these threats are increasing at a swift pace. The United States no longer has the luxury of lengthy timelines to develop and deploy a missile defense against them. The ballistic missile programs of nascent missile possessors – or would-be possessors – are chiefly designed to inflict major devastation without necessari-

The Technical Solution: A Global Layered Missile Defense with Sea- and Space-based Elements

A global layered defense capability is necessary to counter these threats. Near-term options exist for augmenting sea-based defenses and deploying space-based defenses within the next decade, resulting in a comprehensive, global layered missile defense system. Layered defenses provide multiple opportunities to destroy attacking missiles in all three phases of flight from any direction regardless of their geographic starting point. Furthermore, a layered defense makes the countermeasures available to the offensive systems much less effective than would be the case if interdiction was only possible in one (or two) phase(s) of the missile’s flight. Boost-phase intercepts, most efficiently conducted by components deployed in space, are particularly desirable because a missile is most vulnerable during this segment since it is relatively slow moving, presents a readily identifiable target (bright rocket plume), and has not released any of its warheads or countermeasures that would complicate interception in subsequent phases. Boost-phase interception has the added advantage that the missile’s payload may, depending on how early interdiction occurs, fall back on the attacking nation. This situation could deter the launching state if it is confronted with the likelihood of serious damage to its own territory. In addition, depending on the number of assets deployed, a space-based boost-phase defense could always be on station on a world-wide basis, unfettered by sovereignty issues of overflight and operations on another nation’s territory.

Layered defenses that include space-based interceptors might also dissuade adversaries in possession of ballistic missiles, or would-be possessors, from seeking costly in-

Missile Defense, the Space Relationship, and the Twenty-First Century

Conclusions and Recommendations
vestments to acquire ballistic missiles that could not easily penetrate such a defensive shield. As a result, the United States would retain maximum flexibility in a crisis situation in which the threat of ballistic missile attacks would be minimized. In order to build a global layered missile defense, the United States must take several important steps in parallel.

Going Back to the Future

Because space-based defenses offer the widest coverage and largest number of intercept opportunities, and little if anything has been done to take advantage of space defense technologies that were mature 15 years ago, a new initiative is required to bring that technology and its potential up to date. We recommend a streamlined technology-limited development program based on the Brilliant Pebbles program to demonstrate within three years the feasibility of a constellation of space-based interceptors to intercept ballistic missiles in all phases of flight—boost, midcourse, and terminal. To avoid conflicts with existing acquisition programs focused on ground- and sea-based defenses while moving forward as rapidly as possible, this effort should be undertaken by a special task force of competent technical personnel experienced in developing pioneering technology. Consequently, the United States should:

- Fund DARPA, which specializes in the innovation of defense systems through advanced technology, to assemble a small team charged with rapidly reviving and deploying a modern space-based kinetic-energy interceptor system in the manner of past successful programs such as the development of the first ICBM and the Polaris missile. Of particular importance is a small, empowered, technically competent management and engineering team from government and industry, fully supported with needed funds.
- Building on the Brilliant Pebbles technologies created in the late 1980s and early 1990s as well as advanced technologies produced since then in both the military and commercial sectors, the DARPA team should develop and rigorously test within three years a space-based system to perform boost, midcourse, and terminal interception tests against ballistic missiles of several ranges. The anticipated cost of this three-year effort, which could leave in place a test bed with limited intercept capability, is $3 billion to $5 billion.
- Direct the Air Force Space Command to work with DARPA to develop the operational concept for a constellation of space-based interceptors, with an anticipated handoff to the Air Force in three to five years of an evolving capability that can be integrated into U.S. Strategic Command’s global architecture.
- Using an event-driven procurement strategy deploy a Brilliant Pebbles twenty-first century space-defense system with the goal of an initial capability in 2012. Because of the number that would be deployed, Brilliant Pebbles would have multiple opportunities for interception, increasing chances of a successful kill in either the boost or midcourse phase, or even in the early terminal phase. These characteristics stand in sharp contrast to the GMD ground-based interceptors which, in the limited numbers presently planned, may not provide more than one intercept opportunity. Moreover, Brilliant Pebbles interceptors are small (1.4-2.3 kilograms and approximately the size of a watermelon), making them difficult to detect and thus target; they also contain an inherent self-defense capability that further adds to their survivability. Brilliant Pebbles was approximately midway through engineering and manufacturing development before it was cancelled, suggesting that with the needed political will, an updated system could be developed and deployed in a timely fashion. For example, based on the fully approved Defense Acquisition Board plan from 1991, 1,000 Brilliant Pebbles interceptors could be developed, tested, deployed, and operated for 20 years in a low-to-moderate risk event-driven acquisition program for $11 billion in 1989 dollars, or $19.1 billion in inflation-adjusted 2008 dollars.

Enhancing Existing Sea-based Defenses

With the proper direction, the sea-based missile defense program now under development can become a highly effective component of a global layered defense as well as serve as an incubator for other technologies that will eventually be used in space. Moreover, thanks to mature technologies and the considerable investment already made in the U.S. Navy Aegis and the Standard Missile systems (some $60 billion to date), sea-based defenses constitute an established and advantageous near-term missile defense option for the United States. For example, such defenses provide flexible deployment options on U.S. ships operating worldwide in international waters, which make up over two-thirds of the Earth’s surface. This capability for worldwide operations and rapid transit to potential crisis spots also eliminates the often difficult negotiating process needed to field ground-based defense systems on foreign territory. Maximizing the unique benefits of sea-based defenses requires that the United States:

- Make organizational changes within the Missile Defense Agency to allow the U.S. Navy to manage its missile defense activities more effectively. In addition, increase
funding for the Aegis ballistic missile defense program, including the Standard Missile system, to enable pursuit of upgrade projects at a pace that is limited only by the constraints of technology rather than by the fiscal constraints currently placed on it.

- Expand existing areas of coverage by outfitting, as quickly as possible, additional U.S. (and allied) vessels with boost-, ascent, midcourse-, and terminal-phase antimissile capabilities. For example, the SM-3 Block I (and its variants) that is launched from the U.S. Navy’s Vertical Launch System (VLS), can be deployed on several U.S. ships outfitted with VLS, including Aegis-Ticonderoga-class cruisers and Spruance- and Arleigh Burke-class destroyers. Increase the number of BMD-capable Aegis ships deployed in the Atlantic as quickly as possible. In addition, include missile defense capabilities in a number of ships in the fleets of U.S. allies that already have VLS capabilities.

- Extend existing DoD and NASA test-range infrastructure along the Eastern Seaboard to enable an East Coast test range for testing the BMD-capable Aegis ships being deployed in the Atlantic. Such testing should demonstrate a capability to counter the potential threat of Scuds being launched from ships off America’s coasts, especially in a mode that could pose an EMP threat to the major portion of the U.S. population that lives within a few hundred miles of the East Coast. Similar testing should be conducted along the West Coast based on the existing West Coast test range.

- Harness Brilliant Pebbles technologies in support of current work on sea-based defenses. For example, revive the technologies for the lightweight Advanced Technology Kill Vehicle (ATKV), developed for space-based applications over a decade ago. The ATKV, mated to the enhanced SM-3 Block IIA (a joint U.S.-Japanese program), could achieve velocities providing a boost-phase intercept capability far greater than that offered by the current SM-3 noted above. The ATKV/Block IIA combination would also have the cost-saving advantage of being compatible with the existing U.S. Navy’s VLS infrastructure (and that of several allied nations) thus eliminating the need to develop a larger missile and new vertical launch system to achieve a comparable capability.

- Fully fund the SM-2 Block IV to defend against a shipborne Scud launched off the U.S. coast (more below). The estimated cost is between $50 million and $100 million.

Augmenting U.S. Missile Defenses to Address the Ship-borne Scud Threat

As noted in the 1998 Rumsfeld Space Commission report, the real and growing danger posed today by the possibility of a short- or medium-range missile launched from ships off the coasts of the United States warrants the deployment of missile defenses as a component of homeland security. Notably, if these missiles were armed with nuclear weapons, they could create an EMP with devastating effects over a wide area of the United States. The current GMD missile defense program, however, leaves American cities vulnerable to attacks from close-in threats from the sea, including from terrorists employing easily purchased ship-borne Scuds. To address this vulnerability, the United States should:

- Immediately authorize development, testing, and operations of a naval component that utilizes the U.S. Navy Aegis and the Standard Missile systems described above to counter this threat.

- Conduct tests near our coasts that demonstrate a capability to shoot down such short- and medium-range ballistic missiles. Immediately authorize and fund extensions to existing DoD and NASA infrastructure along the East Coast to enable such testing in an East Coast test range—similar to testing that can be conducted in the current West Coast test range.

- As an interim measure if necessary, deploy the Patriot missile defense system to provide rudimentary antimissile capabilities for major American cities against a ship-borne Scud attack. Because of the large number of Patriots that would need to be deployed, this is a temporary solution until sea-based missile defense capabilities become available.

- Develop and deploy supplemental missile defense assets/technologies capable of providing near-term boost-phase interception, including the revival of the Raptor-Talon unmanned aerial vehicle program for coastal defense applications developed in the early 1990s.

Limiting Deployment of the Ground-based Missile Defense System

- Ensure that the current GMD system has incorporated the most advanced technologies available and is using operational procedures that may have been restricted by the now-defunct ABM Treaty.

- Given its limited capabilities focused on small-scale attacks by rogue states, and the fact that it does not address shorter-range threats from ship-borne Scuds off the U.S. coastline let alone the more sophisticated threats.
emerging from China and Russia, the GMD system should not be expanded beyond current deployment sites in Alaska and California. Instead, the United States should move forward expeditiously to develop the sea- and space-based missile defense architecture outlined above to create a global layered missile defense system capable of countering the threat environment of the early twenty-first century.

Committing to Space
The importance of space to the United States extends beyond missile defense. Space is an arena of crucial importance to the United States for civil, commercial, and national security purposes. It is essential that the United States not only be able to use space for missile defense, but also to have assured access to space as the means to protect its other vital space-based assets, including improved situational awareness in space. And even though the United States remains at the forefront of space technology and exploration today, its continued preeminence is not assured. At least 35 countries (several of which are hostile to the United States) have space programs, many of which have already led to the deployment of assets in space and more will do so in the years ahead.

Yet the United States is not providing adequate resources for its military space programs. This is dangerous because the ability to attack and disrupt U.S. space assets, launch systems, and associated ground support stations is expanding on the part of states and even non-state actors. For example, China is developing advanced capabilities for space warfare, including lasers and direct-ascent capabilities that could be launched from China to destroy or disrupt U.S. satellites. In addition, as discussed earlier, several states – as well as terrorist groups – currently possess or are pursuing the capability to launch an EMP strike that would render useless many critical U.S. national security, civilian, and commercial space assets.

Therefore, if it is to remain a space power – and indeed a global power – the United States must not only be capable of detecting and deterring such attacks, but also of possessing the means to defend against them, identify their source, and quickly recover and replenish vital assets. This means that the United States should:

- Articulate a commitment to space dominance by immediately making major new investments in the research and development of space-based technologies to counteract the decline (20 percent to less than 8 percent) in the U.S. aerospace sector’s share of total national research and development investment since the 1980s. The increased funding should support efforts to protect existing space-based assets and field technologies to enhance and safeguard the commercial and national security uses of space, such as situational awareness. In addition, given that numerous U.S. national security satellites are approaching obsolescence, successor generation systems are urgently needed. This includes the capacity to replace disabled or destroyed space assets rapidly and underscores the need for robust, low-cost U.S. space launch capabilities.
- Acknowledge the centrality of space to the development, testing, and deployment of a missile defense system capable of protecting the United States, its overseas forces, and its allies. Missile defense, together with space control and assured access, are capabilities central to U.S. efforts for creating disincentives to states and terrorist organizations seeking WMD and their delivery systems.
- Reject efforts to counter current American primacy in space through legal regimes and arrangements. The experience of the ABM Treaty, together with endeavors now underway to restrict weapons proliferation and deployment by international agreement, does not give credibility to efforts to impose new international legal prohibitions against space-based missile defense. Such actions are more likely to place burdensome restrictions on the use of space by the United States, rather than deterring others from developing their own space programs.

Creating a Science and Technology Workforce for the Future
The U.S. science and technology base must be resuscitated. In American universities today, graduate enrollment by U.S. citizens in S&T fields is steadily eroding. The total number of advanced degrees earned in science and engineering by Americans has declined from 75 percent in the mid-1960s to less than 60 percent today. In 2004, the proportion of the U.S. college-aged population earning degrees in science and engineering was lower than that for 16 countries in Asia and Europe. The steepening decline in new S&T personnel with U.S. citizenship entering the workforce at our national laboratories, in defense aerospace, and in the commercial sector (increasingly the breeding ground for technologies for defense applications) means that there is a major concern about the aging and atrophy of the base of scientists and engineers upon whom viable military space programs and the development of enabling technology rely.

These trends have serious ramifications for America’s capacity for S&T leadership in the twenty-first century. As a result, the United States needs to reenergize its support for the creation of a future cadre of scientists and engineers. Consequently, the United States should:

Conclusions and Recommendations
• Restore federal support for, and funding of, physical science research and engineering at least to the level currently received by biological research. At a minimum Defense Department S&T funding should be increased to reach a threshold of 3 percent of total DoD spending. This would add several billion dollars to the DoD S&T line.1
• To revive interest among students and faculty in space and defense technology at U.S. colleges and universities, reorganize the National Science Foundation to support funding of space security research under specific budgetary authority following the NSF model for materials science research. A program of research funding solicitations and awards in missile defense-related S&T should be developed that is similar to the materials science model. Moreover, the missile defense component of space security research should be supported by advisory and peer groups with expertise that would evolve with the technology as part of a new missile defense science and technology collegial community.
• Increase emphasis on S&T in curricula as a way of strengthening the U.S. science, technology, and engineering base and offer research on the development of missile defense and space security technologies to emerging scientists, who are now uniformly less averse to work in national security-related fields.
• Encourage the publication of S&T research in a way that fosters a sustainable and vibrant academic research community but safeguards sensitive data from improper dissemination. For example, sensitive research could follow the private-sector industrial sponsored research model of establishing parameters on a “black box” (no identification) in which critical measurements are performed.

Broadening Missile Defense Collaboration with U.S. Allies

Missile defense already constitutes a growing part of U.S. national security strategy. In order for missile defense to contribute as fully as possible to this strategy, however, it must have global reach. This includes both the ability to protect allies and coalition partners and to work with them as contributors to a global missile defense system. Over the past several years, a general consensus has emerged among many U.S. allies regarding the severity of the ballistic missile threat and the logical response that missile defenses offer. This trend has helped foster international cooperation in the development of a layered global system to protect the United States and its allies against ballistic missile attack. Joint cooperative missile defense efforts already exist between the United States and several nations, including Germany, Italy, the United Kingdom, Denmark, Turkey, Israel, Japan, South Korea, Australia, and several Gulf Cooperation Council states. NATO is also exploring missile defense options.

Several political and technological benefits may result for both parties from cooperative technology programs at the international level: allies gain the opportunity to work with the United States in developing new technologies; technologies or assets that could shorten deployment of a U.S. missile defense may reside with American allies; missile defense planning, joint testing, and exercises will help the United States and its allies develop common concepts of operations and facilitate interoperability; cooperation may facilitate future access and basing of missile defenses on allied territories; and the overall relationship between the United States and its allies could be strengthened through such cooperative programs. Moreover, the fact that an increasing number of U.S. allied and coalition partners possess both sea-based and ground-based missile defenses (several of which are U.S. systems such as the Aegis and Standard Missile systems and the Patriot) will provide cost savings and augment U.S.-allied interoperability and the internetting of ground- and sea-based sensors and systems to provide an integrated layered defense. Together they furnish the starting point for a missile defense that could target, track, and destroy hostile short- or medium-range ballistic missiles launched against U.S. troops overseas or America’s allies.

Such U.S. and allied missile defense efforts will create the foundation for a “system of systems.” And although the United States will contribute to each layer of a global missile defense system, it is likely that a logical division of labor will evolve in which the United States focuses primarily on space-based and other components while allies and coalition partners emphasize sea- and land-based systems. A system of systems will make it extremely difficult for an adversary to undermine U.S. crisis decision making by threats to launch ballistic missiles against either the United States, U.S. forces forward deployed, or our allies or coalition partners. Such an approach will reassure allies who otherwise might feel increasingly vulnerable to WMD/missile threats – including EMP attacks from ship-borne Scuds – as well as help dissuade states from developing nuclear weapons and their delivery systems by reinforcing U.S. extended deterrence.
However, several potential issues also need to be addressed if collaborative missile defense activities between the United States and its allies are to occur, such as information sharing, the security of information transferred – especially related to command, control, and intelligence – and the allocation of contracts. To move forward with mutually beneficial collaboration on missile defense with our allies the United States should:

- Encourage and build on the deployment and upgrading by U.S. allies of their missile defense capabilities (ground- and sea-based) in order to develop a system-of-systems global layered defense with an appropriate division of labor for U.S.-allied missile defense cooperation. At the same time strengthen allied participation where feasible in sea- and space-based missile defenses.
- Identify the technologies and assets resident in allied nations that will encourage the development and deployment of a layered missile defense system.
- Facilitate technology sharing with international partners on key missile defense systems while making certain that structures and procedures are in place to safeguard such cutting-edge technologies.
- Ensure that sufficient interoperability, flexibility, adaptability, and affordability exist between current and planned U.S. and allied systems as well as in joint U.S.-allied planning of new missile defense technologies. This approach will enable U.S. allies to “plug into” America’s missile defense systems (and vice versa).
- Recognize that contributions from coalition members and allies to missile defense will reflect the differing situations facing the various countries as well as the competition between missile defense and other budgetary priorities.
- Educate allied officials and decision makers and their publics in an outreach program about the growing threats posed by WMD/ballistic missiles, the role missile defense systems can play to counter them, and the opportunities for collaboration with the United States on such systems.

The Political Solution: Rectifying Outdated Mindsets, Misconceptions, and Mistaken Beliefs

The nature of the political opposition arrayed against missile defense over the past five decades has been unique. It is difficult to cite another example in the history of U.S. defense development that has been marked by the dominance of political factors at the expense of technical considerations. Although there have always been questions about what constitutes an effective defense and how much to pay for it, technical rather than political reasons have usually driven the debate about whether or not to develop and deploy a particular system.

In the case of missile defense, however, it has been essentially the reverse: political considerations have primarily shaped technical behavior that far too often has been designed to achieve certain predetermined political ends, in which the goal of developing the most technically sound and cost-effective missile defense has been subordinated to other interests. Specifically, the ABM Treaty and the doctrine of Mutual Assured Destruction made virtually impossible the deployment of effective anti-missile systems. The demise of the ABM Treaty cleared the way for technology to be used more logically and efficiently, and forced missile defense opponents to set forth other reasons why the United States should not defend itself, apart from the facile statement that the treaty outlaws it.

While the above discussion of a technical solution outlines the needed layered architecture and the programmatic, technical, organizational, and budgetary measures required to develop and build it, political action is also essential if such a system, incorporating space-based capabilities, is to become a reality. The United States must undertake an outreach program to remedy missile defense misconceptions and demonstrate convincingly that technical solutions exist to address the real and growing threat of WMD and ballistic missiles.

Empowering the American Public

In light of the continuing debate over the importance and effectiveness of ballistic missile defenses, and especially in the context of the growing debate about the weaponization of space, a proactive educational outreach program is essential to inform the American public, Congress, and America’s allies and friends about the threats posed by ballistic missiles and the potential to counter them in a timely fashion. Most importantly, this effort must emphasize the need to avoid arms control and other inhibitions that could limit the ability to take full advantage of advanced technology to protect America, our overseas troops, and friends and allies from ballistic missile attack. As a result, the United States needs to:

- Make clear that affordable, mature sea- and space-based options are available which would supplement the current GMD system but provide significantly greater protection.
• Raise the profile of missile defense at the highest echelons of the U.S. government through bipartisan consensus building.
• Persuade the nation’s elected officials to move decisively to protect the American people against ballistic missile attack.
• Foster a cadre of sympathetic members and professional staff in the U.S. Congress through outreach designed to educate such decision makers regarding the capabilities of missile defense and the gravity of the current and growing threat of ballistic missiles and WMD.
• Engage the emerging, post-September 11 national security and homeland defense constituency now visible at the grassroots and state level of the United States.
• Promote innovation within the government bureaucracy through emphasis on multiple paths of technological evolution and optimization of existing systems.
State of Alaska

SPONSOR SUBSTITUTE FOR SENATE JOINT RESOLUTION NO. 30 IN THE LEGISLATURE OF THE STATE OF ALASKA
TWENTIETH LEGISLATURE - FIRST SESSION
BY THE SENATE JUDICIARY COMMITTEE BY REQUEST
Introduced: May 2, 1997
Referred: Judiciary
A RESOLUTION
Relating to the defense of Alaska from offensive nuclear attack.

BE IT RESOLVED BY THE LEGISLATURE OF THE STATE OF ALASKA: WHEREAS Alaska is the 49th state to enter the federal union of the United States of America and is entitled to all of the rights, privileges, and obligations that the union affords and requires; and

WHEREAS Alaska possesses natural resources, including energy, mineral, and human resources, vital to the prosperity and national security of the United States; and

WHEREAS the people of Alaska are conscious of the state’s remote northern location and proximity to Northeast Asia and the Eurasian land mass, and of how that unique location places the state in a more vulnerable position than other states with regard to missiles that could be launched in Asia and Europe; and

WHEREAS the people of Alaska recognize the changing nature of the International political structure and the evolution and proliferation of missile delivery systems and weapons of mass destruction as foreign states seek the military means to deter the power of the United States in international affairs; and

WHEREAS there is a growing threat to Alaska by potential aggressors in these nations and in rogue nations that are seeking nuclear weapons capability and that have sponsored international terrorism; and

WHEREAS a National Intelligence Estimate to assess missile threats to the United States left Alaska and Hawaii out of the assessment and estimate; and

WHEREAS one of the primary reasons for joining the union of the United States of America was to gain security for the people of Alaska and for the common regulation of foreign affairs on the basis of an equitable membership in the United States federation; and

WHEREAS the United States plans to field a national missile defense, perhaps as early as 2003; this national missile defense plan will provide only a fragile defense for Alaska, the state most likely to be threatened by new missile powers that are emerging in Northeast Asia;

BE IT RESOLVED that the Alaska State Legislature respectfully requests the President of the United States to take all actions necessary, within the considerable limits of the resources of the United States, to protect on an equal basis all peoples and resources of this great Union from threat of missile attack regardless of the physical location of the member state; and be it

FURTHER RESOLVED that the Alaska State Legislature respectfully requests that Alaska be included in every National Intelligence Estimate conducted by the United States joint intelligence agencies; and be it

FURTHER RESOLVED that the Alaska State Legislature respectfully requests the President of the United States to include Alaska and Hawaii, not just the contiguous 48 states, in every National Intelligence Estimate of missile threat to the United States; and be it

FURTHER RESOLVED that the Alaska State Legislature urges the United States government to take necessary measures to ensure that Alaska is protected against foreseeable threats, nuclear and otherwise, posed by foreign aggressors, including deployment of a ballistic missile defense system to protect Alaska; and be it

FURTHER RESOLVED that the Alaska State Legislature conveys to the President of the United States expectation that Alaska’s safety and security take priority over any international treaty of obligation and that the President take
whatever action is necessary to ensure that Alaska can be defended against limited missile attacks with the same degree of assurance as that provided to all other states; and be it

FURTHER RESOLVED that the Alaska State Legislature respectfully requests that the appropriate Congressional committees hold hearings in Alaska that include defense experts and administration officials to help Alaskans understand their risks, their level of security, and Alaska’s vulnerability.

COPIES of this resolution shall be sent to the Honorable Bill Clinton, President of the United States; the Honorable Al Gore, Jr., Vice-President of the United States and President of the U.S. Senate; the Honorable Newt Gingrich, Speaker of the U.S. House of Representatives; the Honorable Ted Stevens, Chair of the U.S. Senate Committee on Appropriations; the Honorable Bob Livingston, Chair of the U.S. House of Representatives Committee on Appropriations; the Honorable Strom Thurmond, Chair of the U.S. Senate Committee on Armed Services; the Honorable Floyd Spence, Chair of the U.S. House of Representatives Committee on National Security; and to the Honorable Frank Murkowski, U.S. Senator, and the Honorable Don Young, U.S. Representative, members of the Alaska delegation in Congress.

The Alaska Legislature Resolution SJR 30 was passed by the Alaska Senate 18-0 on May 6, 1997, and by the Alaska House 30-4 on May 11, 1997.

State of Arizona

A CONCURRENT RESOLUTION DECLARING SUPPORT FOR A MISSILE DEFENSE SYSTEM.

Whereas, the people of the State of Arizona view with growing concern the proliferation of nuclear, chemical and biological weapons of mass destruction and the missile delivery capabilities of these weapons in the hands of unstable foreign regimes; and

Whereas, the tragedy of September 11, 2001 shows that America is vulnerable to attack by foreign enemies; and

Whereas, the people of the State of Arizona wish to affirm their support of the United States government in taking all actions necessary to protect the people of America and future generations from attacks by missiles capable of causing mass destruction and loss of American lives.

Therefore

Be it resolved by the House of Representatives of the State of Arizona, the Senate concurring:

1. That the Members of the Legislature support the President of the United States in directing the considerable scientific and technological capabilities of this nation and in taking all actions necessary to protect the states and their citizens, our allies and our armed forces abroad from the threat of missile attack.

2. That the Members of the Legislature convey to the President and Congress of the United States that a coast-to-coast, effective missile defense system will require the deployment of a robust, multi-layered architecture consisting of integrated land-based, sea-based and space-based capabilities to deter evolving future threats from missiles as weapons of mass destruction and to meet and destroy them when necessary.

3. That the Members of the Legislature appeal to the President and Congress of the United States to plan and fund a missile defense system beyond 2005 that would consolidate technological advancement and expansion from current limited applications.

4. That the Secretary of State of the State of Arizona transmit copies of this Resolution to the President of the United States, the President of the United States Senate, the Speaker of the United States House of Representatives and each member of Congress from the State of Arizona.

The Arizona House Concurrent Resolution HCR 2027 was first read on January 30, 2003. After the third reading the bill passed on March 5, 2003, 42-15. [42-15-3-0] *

State of California

BILL NUMBER: HR 51 AMENDED IN ASSEMBLY FEBRUARY 19, 1998

House Resolution No. 51—Relative to the crisis in Iraq.

WHEREAS, Iraq under Saddam Hussein has continued the production of weapons of mass destruction and missile delivery systems for these weapons; and

WHEREAS, Saddam Hussein has been defiant in the face of the international consensus that those actions should cease; and

WHEREAS, These weapons pose a threat to all people as well as to our American forces in the Middle East; and

WHEREAS, The people of California believe it is better to prevent an attack from weapons of mass destruction rather than to retaliate against them; and
WHEREAS, Many of the weapons of mass destruction that were possessed by the former Soviet Union are as yet unaccounted for; and

WHEREAS, United States President Bill Clinton has previously declared a national state of emergency stating that the proliferation of weapons of mass destruction continues to pose an unusual and extraordinary threat to the national security, foreign policy, and economy of the United States; now, therefore, be it

Resolved by the Assembly of the State of California,

That it fully supports the President and the Congress of the United States in compelling Iraq’s compliance with all conditions of the cease fire, including the United Nations inspection of Iraq’s chemical and biological arsenal, and in eliminating the threat of Saddam Hussein’s regime to Iraq’s people and their neighbors; and be it further

Resolved, That the Assembly conveys to the President of the United States its support for his efforts and those of Congress to assure California’s safety and security, and its support for ensuring that California can be defended against missile attacks; and be it further

Resolved, That the Chief Clerk of the Assembly shall transmit copies of this resolution to the Honorable Bill Clinton, President of the United States; the Honorable Al Gore, Jr., Vice President of the United States; the Honorable Newt Gingrich, Speaker of the House of Representatives; the Honorable Strom Thurmond, Chair of the United States Senate Committee on Armed Services; the Honorable Floyd Spence, Chair of the House of Representatives Committee on National Security; and to each Senator and Representative from California in the Congress of the United States.

WHEREAS, New Hampshire responded to the call at Bunker Hill with volunteers in the struggle for American independence and has contributed to national defense through its citizenry ever since; and

WHEREAS, the People of New Hampshire are aware of the proliferation of weapons of mass destruction and their threat to New Hampshire, New England, and the United States; and

WHEREAS, the United States does not possess a means of defense against ballistic missiles, bearing warheads of mass destruction, launched by those who oppose American interests throughout the world; and

WHEREAS, New Hampshire is imperiled by the existing incapability of national self-defense against ballistic missile attack from hostile or accidental sources along with other States of the Union; in consequence, New Hampshire asserts its leadership as one of fifty;

BE IT RESOLVED that the Legislature of New Hampshire respectfully requests the President of the United States to take all actions necessary, within the considerable limits of technological resources of this great Union, to protect New Hampshire, New England, and all the people of the United States from the threat of missile attack; and be it

FURTHER RESOLVED that the Legislature of New Hampshire respectfully requests that the President of the United States act to allow the United States freedom to defend itself from missile attack, Treaties to the contrary notwithstanding; and be it

FURTHER RESOLVED that the Legislature of New Hampshire conveys to the President and the Congress of the United States that national missile defense requires the deployment of the most robust system consisting of a land-based, sea-based, and space-based multi-layered architecture so that future threats will be adequately met or deterred.

State of New Hampshire

Be It Resolved By The Legislature of the State of New Hampshire:

WHEREAS, New Hampshire is located in the New England region of the Northeastern United States and is populated by over 1,000,000 persons, and maintains distinguished centers of higher learning, and is the site of advanced information and defense technology, and is noted for outstanding natural endowments of forests, mountains, lakes, and derives partial energy from nuclear power; and

WHEREAS, the People of New Hampshire are conscious of the state’s current assets and favorable future development for their children in other generations; and

California House Resolution HR 51 was introduced February 12, 1998; amended February 19, 1998; and passed 62-2.

State of New York

LEGISLATIVE RESOLUTION urging the President of the United States and the Congress of the United States to provide for an adequate missile defense system

WHEREAS, New York, the Empire State, located among the Middle Atlantic states and bordered by Canada and populated by an estimated 19,000,000 persons, is the center of world finance and commerce, and maintains universally recognized centers of learning and research in science, technology and human health, and is endowed with the highest mountains in the Northeast Adirondack uplands; and

WHEREAS, New York City was attacked by terrorists on September 11, 2001, with intensive destruction and death, a national tragedy which opened the 21st century with the American-led war against terrorism; and

WHEREAS, The people of New York are conscious and steadfast in defense of these assets of the Empire State and desire a secure and favorable future for their children and future generations; and

WHEREAS, The people of New York are aware of the global proliferation of short-range, medium-range and long-range ballistic missiles as weapons of mass destruction and their threat to New York, the United States and its armed forces abroad; and

WHEREAS, The United States does not possess a defense against such missiles launched by terrorist organizations, hostile states, or from ships anywhere on the world’s oceans and seas, including waters adjacent to the coastal cities of America; and

WHEREAS, There is no defense against a SCUD-B missile, with a 15 kiloton nuclear warhead, fired at New York City from a container ship 300 kilometers off-shore which, from an air-blast over downtown Manhattan, would cause an estimated 2,800,000 fatalities and 3,600,000 injuries; and

WHEREAS, A comprehensive defense against missile attack, including from short-range off-shore container ship threats, calls for a multi-layered system of defensive interceptors from ground, air, sea and space-based systems; and

WHEREAS, The United States Navy has demonstrated its capability to deploy ships to intercept hostile short-range and medium-range missiles while they are rising from their launchers; now, therefore, be it

RESOLVED, That this Legislative Body pause in its deliberations to hereby convey to the President of the United States and to the Congress that an effective missile defense system will require the deployment of a robust, multi-layered architecture consisting of integrated land-based, air-based, sea-based and space-based capabilities to deter evolving future threats and to meet them and destroy them when necessary; and be it further

RESOLVED, That copies of this Resolution, suitably engrossed, be transmitted to the President of the United States, the Speaker of the United States House of Representatives, the President of the United States Senate, the Chairman of the Joint Chiefs of Staff, and the members of the New York Congressional Delegation.

Approved by the New York State Assembly Veterans Affairs Committee, March 2004.
Approved by the New York State Armed Forces Legislative Caucus, May 25, 2004.
Resolution submitted to the Assembly with 65 bipartisan cosponsors.

Commonwealth of Pennsylvania

THE GENERAL ASSEMBLY OF PENNSYLVANIA

Referred To Committee On Intergovernmental Affairs, June 11, 2001

Memorializing the President of the United States and Congress to fund and deploy a national missile defense system.

WHEREAS, The ballistic missile threat to the United States has been declared by the President, the Secretary of Defense, the Congress of the United States, the bipartisan Commission to Assess the Ballistic Missile Threat to the United States (known as the Rumsfeld Commission) and the United States intelligence community to be a clear, present and growing danger to the United States; and

WHEREAS, The United States currently cannot stop even one missile launched with malice or by accident by any number of foreign states or terrorist organizations; and

WHEREAS, It is immoral to intentionally leave the American people, our troops and overseas allies and the nation’s children vulnerable to attack by nuclear, chemical or biological weapons delivered by ballistic missiles; and

WHEREAS, The citizens of the Commonwealth of Pennsylvania and the United States remain exposed to missile attack; therefore be it

RESOLVED, That the House of Representatives of the Commonwealth of Pennsylvania memorialize the Congress to fully fund and deploy as soon as technologically possible an effective, affordable global missile defense system, including a sea-based system to intercept theater and long-range missiles, space-based sensors and ground-based interceptors and radar, to protect all Americans, United States
Missile Defense, the Space Relationship, and the Twenty-First Century

appendix a

The Pennsylvania General Assembly referred House Resolution No. 238 to Committee on Intergovernmental Affairs, [A Resolution Memorializing the President of the United States and Congress to fund and deploy a national missile defense system] June 11, 2001, and passed by voice vote.

Commonwealth of Virginia

House of Delegates

Whereas Virginia, the Old Dominion, is located in the upper South region of the United States and is populated by over 7,000,000 persons, and is noted for its contribution to the founding of the United States through leadership and political thought, and maintains distinguished centers of higher education and research, and is the site of advanced information and defense technology, and is the center of national naval force concentration, and is the foremost shipbuilder on its coast while possessing natural endowments of mountains and forests on its western limits and agriculture on its southern tier; and

Whereas, the people of Virginia are conscious of these assets of the Old Dominion and a favorable future for their children and future generations; and

Whereas, Virginia provided leadership in the Revolutionary War and was the location of the surrender of Great Britain that ended it, and has contributed notably to national defense through its citizenry both in the military and industry ever since; and

Whereas, the people of Virginia are aware of the global proliferation of short-range, medium-range and long-range ballistic missiles as weapons of mass destruction and their threat to our nation, our allies, and our armed forces abroad; and

Whereas, the United States does not possess an effective defense against such missiles launched by hostile states or by terrorist organizations within the borders of such states or from ships anywhere on the world’s seas and oceans, including near to the coastal cities of America; and

Whereas, the President of the United States has withdrawn from the treaty with the now extinct Soviet Union that prohibited American effective self-defense against ballistic missile attack, and has announced the deployment of a ground-based and sea-based limited missile defense system by the year 2005 as a beginning towards a robust system that will be multi-layered, meaning land, sea, air, and space interception components; and

Whereas, short-range and medium-range ballistic missiles launched from ships off the East Coast of the United States will be outside the protective reach of the Pacific Ocean-Alaska-based system, and the population of Virginia’s tidewater as well as the preponderant national naval presence located therein are now vulnerable and will be still vulnerable to such a missile attack with warheads of mass destruction after planned fielding in 2005 of missile defenses in Alaska and California; and

Whereas, missile defense interceptors based in Alaska and California may not be able to protect the population of Virginia’s tidewater and other East Coast areas from long-range ballistic missiles launched from threatening states in the Middle East and North Africa; and

Whereas, the United States Navy has demonstrated its capability to use ships that can be based in Virginia’s Tidewater area to intercept short-range and medium-range ballistic missiles while they are rising from their launchers, which could be on nearby ships, and this capability can be improved to intercept long-range ballistic missiles; now, therefore, be it

Resolved by the House of Delegates:

That the Virginia House of Delegates hereby supports the President of the United States to continue to take all actions necessary, directing the considerable scientific and technological capability of this great Union, to protect all 50 states and their people, our allies, and our armed forces abroad from the threat of missile attack; and

That the Virginia House of Delegates hereby conveys to the President of the United States and the Congress that a ocean-to-ocean, effective missile defense system will require the deployment of a robust, multi-layered architecture consisting of integrated land-based, sea-based, air-based, and space-based capabilities to deter evolving future threats and to meet and destroy them when necessary; and

That the Virginia House of Delegates urges the President of the United States and Congress to plan and provide funding for a Tidewater Virginia and East Coast Testbed activity, similar to the West Coast test activities in Alaska, California, and the Pacific Ocean, leading by 2005 to an East Coast sea-based defense – initially against ship-based short- and medium-range ballistic missiles and, with improvements, against ballistic missiles of all ranges launched from anywhere; and

That copies of this resolution shall be sent by the House Clerk to the Virginia Congressional delegation, the Speak-
er of the House of Representatives, the President of the Senate of the United States, the Chairman of the Joint Chiefs of Staff, and the President of the United States.

The Virginia House of Delegates Resolution HR40 passed on February 1, 2003, 76-12 [3 abstained, 9 not voting].

State of Vermont
House of Representatives
Montpelier, Vermont
House Resolution

Whereas, Vermont is located in the New England region of the northeastern United States, and is populated by over 600,000 persons and maintains distinguished centers of higher learning, is the site of advanced information and defense technology, is noted for outstanding natural endowments of forests, mountains, and lakes, and derives partial energy requirements from nuclear power, and

Whereas, Vermonteres are conscious of the state's assets and favorable future development for their children and other generations, and

Whereas, Vermont's citizenry has always contributed volunteers to our nation's defense, and

Whereas, Vermonteres are aware of the proliferation of weapons of mass destruction and their threat to Vermont, New England, and the United States, and

Whereas, the United States does not possess a means of defense against ballistic missiles bearing warheads of mass destruction, launched by anyone who opposes American interests throughout the world, and

Whereas, Vermont is imperiled by the existing incapability of national self-defense against ballistic missile attack from hostile or accidental sources, along with the other states of the union; in consequence, Vermont asserts its leadership as one of the 50 states, now therefore be it

Resolved by the House of Representatives:

That this legislative body urges the President of the United States to take all actions necessary, within the considerable limits of technological resources of this great union, to protect Vermont, New England and all the people of the United States from the threat of missile attack, and be it further

Resolved: That the President of the United States be allowed the freedom to defend the country from missile attack, treaties to the contrary notwithstanding, and be it further

Resolved: That this House conveys to the President of the United States and to Congress that national missile defense requires the deployment of the most robust system, consist-
The Surrey Satellite Technology Ltd (SSTL) webpage claims with some justification that SSTL is the world’s leading pioneer of small satellite applications and technology. Over the past two decades, SSTL and its University of Surrey partner have produced reliable high-quality small satellites at significantly lower costs by adapting advanced, commercial-off-the-shelf (COTS) technologies for the harsher conditions of space, precisely the approach followed in the late 1980s by Lawrence Livermore National Laboratory’s Brilliant Pebbles program. But, while the United States abandoned Brilliant Pebbles, Surrey excelled in developing and refining this innovative approach to innovative manufacturing and operations of small satellites.

SSTL and its staff of under 100 professionals and technicians, introduced modular microsatellite design in 1990, delivered its first usable remote sensing imagery from a 50 kg satellite in 1991; first demonstrated in 1993 on-board orbit determination using GPS along with a star camera and an advanced earth imaging system; and during the past twenty-three years has launched twenty-three small satellites into orbit for international customers as diverse as the United States Air Force and the Chinese Tsinghua University. Roughly half of SSTL’s customers purchase know-how along with their satellites, and the other half opt for turn-key services.

Currently, Surrey is under contract to deliver nine satellites for international customers: the first Galileo satellite for ESA; two high resolution Earth Observation satellites for the UK MOD and China MoST; five microsatellites for the first Earth Observation constellation (RapidEye); and a microsatellite for the Los Alamos National Laboratory.

SSTL recently won the prestigious World Technology Network Award for Space 2004 – beating such high profile teams as Jet Propulsion Laboratories’ Cassini-Huygens team, NASA’s International Space Station and Mars Rover teams, NASA’s Institute of Advanced Concepts, and Bert Rutan’s Scaled Composites team (recent winners of the Ansari X-Prize). On January 12, 2005, SSTL announced they had sold 10-percent ownership to a California-based commercial rocket company, SpaceX.

Surrey has built very small satellites with significant capabilities – tiny (less than 10 kg) “nanosatellites.” They can be constructed in very short periods of time (one - two years) and at extremely low cost ($2-3 million each) opening up new possibilities for space exploration – including for numerous states and even individuals or groups. Numerous available rockets can be modified and used to launch these very light satellites into orbit. And two years ago, SSTL expected shortly to field “picosatellites,” no bigger than a pencil, to maneuver through space via butane power sources, and the greater flexibility in launching these relatively inexpensive, potentially potent spacecraft provides additional proliferation incentives.

The SSTL webpage also claims considerable experience with highly successful microsatellite technology transfer and training programs – e.g., involving Korea, Portugal, Pakistan, Chile, South Africa, Thailand, Singapore, Malaysia, China, Algeria, Nigeria, Thailand, Turkey, and Vietnam.. These intensive and in-depth programs have enabled emerging space nations to take their first steps into space with relatively low cost and risk by capitalizing on the unique combination of academic and commercial activities available at Surrey. During 2002-2004, SSTL teamed with Russia’s Rosoboronexport to launch from Plesetsk Cosmodrome eight microsatellites on three COSMOS rockets built by Polyot of Omsk.

1 See http://www.sstl.co.uk — especially on the company background. During the past 23 years, SSTL, in conjunction with the University of Surrey, has launched 23 small satellites, many of which are still operational and monitored, maintained or controlled from SSTL’s mission and operations control center. About 100 professionals accomplish these missions, a small staff compared to the usual aerospace companies that build and operate spacecraft.

A Case Study: The China Connection

In October 1998, Surrey announced it had "broken into China's tightly controlled internal satellite business with formation of a collaborative venture company in Beijing to develop microsatellites." This announcement occurred barely three months after the 1998 Rumsfeld Commission delivered its unanimous bipartisan report to Congress, elaborating upon the growing ballistic missile threat and the pervasive proliferation of key technology important to space and defense systems.* Subsequently in January 2001, a second Rumsfeld Commission warned against a "space Pearl Harbor," reacting in part to activities in China, including "an advanced anti-satellite weapon called a 'parasitic satellite,' which will be deployed on an experimental basis and enter the stage of space testing in the near future." China's official news agency (Xinhua) has also reported on parasitic satellites, which could attach themselves to U.S. satellites and destroy them upon subsequent radio command.

This military mission is a straight-forward extension of the capabilities demonstrated by SSTL in conjunction with various international partners, notably including China. The reported cooperation between Surrey and China on missions related to such a parasitic anti-satellite capability led to reports of unhappiness between the Bush administration and the United Kingdom, particularly during early interactions with Prime Minister Tony Blair. British Shadow Defense Secretary Iain Duncan Smith reflected this concern, saying, "There is no doubt about this: Surrey has put China into the space weapons business. I am very alarmed. I am particularly concerned because China seems to be right in the middle of nuclear proliferation, passing technology to North Korea, which helps other rogue states such as Iraq and Libya. This may seem like something far away from home. But it directly affects our own national security. This is all happening under the government that promised us ethical foreign policy. What we have got is no foreign policy." Smith was referring to the 1998 deal to develop a new microsatellite, between SSTL, "a company 95-percent owned by Surrey University," and Beijing's Tsinghua University. Mr. Blair himself officiated in the signing of this contract with China's Hangtian Company and within two years, China launched its 50 kg Tsinghua-1 micro-satellite and launches of even smaller (-10 kg) satellites were planned. Some of these smaller Surrey satellites provided for the potential flow of U.S. technology to China through Surrey, as well.

In response to the heightened concern about Surrey's role in proliferating such cutting edge technology, Audrey Nice, speaking for SSTL, said, "We have a joint venture company which is set up to build small satellites with China over the next 25 years. But this is not in terms of defence matters. They are Earth observation and communications satellites." This statement attempted to obscure the reality that SSTL's technology and training programs can be— and probably are being—exploited for military purposes, as is clear from a previous statement by SSTL's founder and Managing Director, Professor Martin Sweeting: "Any satellite with on-board propulsion and navigation capability is potentially an anti-satellite weapon, and that means a number of satellites from several countries in orbit today." Notably, in 2002 Professor Sweeting was knighted by the Queen upon recommendation of the Prime Minister for his "services to microsatellite engineering."

Tsinghua-1/SNAP-1: A Notable Case History

According to its June 29, 2000 press release, SSTL successfully launched the day before from Plesetsk a on single R

3 See the discussion of SSTL in Jane's Space Directory 2002-2003, 25 January 2002, including its business dealings with numerous other nations. Notably, it also lists Clementine among the missions which employed SSTL technology — and Clementine space qualified the first generation Brilliant Pebbles technology — the best missile defense product from the Reagan-Bush I SDI years.

4 Rumsfeld I reference.

5 Rumsfeld II reference. On February 8, 2001, Former Air Force Chief of Staff and member of the 2001 Rumsfeld Space Commission, Ron Fogelman, observed on CNN that a Chinese newspaper was "openly talking about the Chinese developing a thing called a 'parasitic satellite' that would go up and attach itself to our major satellites and just sit there as a kind of sleeper agent, if you will, but ready to be activated."

6 The DoD's September 30, 2001, Quadrennial Defense Review Report provided an oblique reference to such parasites in stating "In addition to exploiting space for their own purposes, future adversaries will also likely seek to deny U.S. forces unimpeded access to space. Space surveillance, ground-based lasers and space jamming capabilities, and proximity micro satellites are becoming increasingly available. A key objective for transformation, therefore, is not only to ensure the U.S. ability to exploit space for military purposes, but also as required to deny an adversary's ability to do so."

9 The January 12, 2001, Defense Daily quoted Director of the Pentagon's Program Analysis and Evaluation Steve Cambone and Defense Secretary Don Rumsfeld as referring to a "company in the United States, in conjunction with Surrey University, now developing and successfully testing micro-satellites that could be very problematic in the wrong hands."

10 Oliver, "US Anger At Blair."

sian COSMOS rocket two of its satellites: Tsinghua-1, a 50kg sophisticated microsatellite built at Surrey as a collaborative project with Tsinghua University, China; and Surrey’s first nanosatellite – SNAP-1, a 6.5 kg spacecraft built under contract to the U.S. Air Force Academy. The two Surrey-built satellites rode piggyback on the Russian Nadezhda COSPAS-SARSAT satellite and all three operated in a 650 km sun-synchronous orbit.

Following the launch, Professor Sir Martin Sweeting said: “This is a very demanding research and development project, SNAP-1 will evaluate the use of commercial micro-miniature technologies and its four CMOS video cameras to demonstrate the inspection of other spacecraft in orbit – in this case Tsinghua-1. The two satellites will demonstrate, for the first time, orbital formation flying when SNAP-1 and Tsinghua-1 plan to rendezvous in orbit via an inter-satellite communications link some weeks into the mission.”

In Beijing, SSTL and Tsinghua engineers activated the Tsinghua-1 microsatellite immediately as it came in range of the Tsinghua Groundstation on its first pass over China at 18:30 BST, 28 June. Later at approximately 02:40 BST, 29 June, the SNAP-1 team at the Surrey Mission Control Centre in Guildford, UK, transmitted commands to its nanosatellite on its first pass over Surrey. For both spacecraft, these commands immediately activated the satellites’ downlink and telemetry systems. Telemetry was received and indicated that all systems on-board both satellites were working as expected. It was the 18th successful SSTL launch since 1981.

SNAP-1 was shipped for launch within nine months of contract signing, and its design life on orbit was a year – but experience has indicated that a decade of useful life might be expected. SNAP-1 employed advanced, UK-developed, GPS navigation, computing, propulsion, and attitude control technologies – and, most notably, its primary payload is a machine vision system capable of inspecting other spacecraft. SNAP-1 was employed to image a Russian satellite and then rendezvous and fly in formation with the Chinese microsatellite, Tsinghua-1. These activities are described in more detail by SSTL’s webpage and the January 4, 2001 SSTL press release.13

Two very important conclusions follow from this case history and the above discussion:

1. The state of the art in building and flying very small, sophisticated satellites has markedly advanced since the SDI pioneered these matters in the late 1980s and early 1990s – it is several technological generations advanced beyond that flown on the 1994 Clementine mission which space qualified the first generation Brilliant Pebbles technology (vintage 1990); and

2. This technology is readily available and affordable for others to apply, it is demonstrably a subject for university research experimentation in the international arena and its advance is no longer in the province of U.S. technologists or the U.S. government to control.

The Space-Race Horse Is Out Of The Barn
The fact that the “space-race horse is out of the barn” was made clear from an October 23, 2001 Financial Times review article describing Surrey’s role in the widespread distribution of critical technology. Entitled “Surrey Brings the Space Race Down In Size,” this excellent article by Fiona Harvey makes clear that rogue states and terrorists could use Surrey’s miniaturization technology, among other things, to communicate undetected in planning and executing their threatening campaigns. And it makes clear the practical impossibility of ever returning the horse to the barn:

Only one ground station is needed to monitor and control [these small satellites], and a network of five satellites would be enough to ensure that one of the network was always in sight of the ground station. Launching such satellites has become easier since the end of the cold war. Across Russia lie stockpiles of missiles still guarded by the army but now largely useless to the government. An unarmed ballistic missile (“with the software altered to make it go up instead of coming back down,” as Professor Sweeting notes) can carry half a dozen microsatellites into space – enough to set up a network that would be continuously monitored from a single ground station. A suitable missile and launcher can be bought for about 5-million pounds.

...[Microsatellites designed to monitor environmental conditions] also pose a threat. David Baker of Jane’s Space Directory points out that they can also assist in the planning and execution of military campaigns by rogue states. Terrorist units can communicate with each other without risk of those communications being intercepted, as they might be if they were using conventional media. Their price puts them within the reach of any well funded organization or individual. “These Satellites are a tremendous threat. These are the Kalishnikovs of the new century – they provide the means to prosecute aggression and from the enabling tools for old fashioned weaponry,” says Baker.

...[The U.S. government is taking the threat very seriously. In the Quadrennial Defence Review of September 30 this year, the Department of Defence noted that “microsatellites are becoming increasingly available to ... [adversaries] exploiting space for their own purposes” and seeking
to sabotage U.S. exploitation of space. Therefore, the report said: "A key objective is . . . as required to deny an adversary's ability to do so.”

The U.K. government enforces strict controls on the export of this technology. "Satellites, whether mini or otherwise are controlled in dual use regulations," says the Department of Trade and Industry. "All applications for a licence to export dual-use items are considered on a case-by-case basis against the consolidated European Union and national arms control licensing criteria, where there are grounds for believing a user would be the armed forces or internal security forces of the recipient country." Applications from countries or organizations deemed ‘undesirable’ would be refused . . .

Yet such control is hard to pull off. One problem . . . is that the definition of undesirable turns out to be all too fluid. Western governments have an appalling record of supporting groups we prefer to think of as freedom fighters until they become terrorists. Another problem is the continuing growth of technological expertise. Currently, SSTL can continuously monitor its microsatellites when they are in orbit. Sitting in the Surrey Space Centre, operators can interrupt microsatellites if they are being put to uses different than those for which they were intended. However, one of the aims of SSTL is not just to sell finished products to developing countries, but also to teach those countries how to make satellites for themselves and develop their own space programmes. South Korea has already launched two satellites, Thailand has launched one and China is preparing its own. Each takes between 18 months and two years to build. That time will shorten as the teams of experts grow more expert.

Satellites that were constructed and launched by countries or organizations without the direct involvement of SSTL would not be susceptible to monitoring from its space center. "Eavesdropping on satellites is very difficult," explains Prof. Sweeting. Moreover, future satellites could be even smaller and cheaper than microsatellites. The company has recently built and successfully operated nanosatellites, which weigh as little as 6.5 kg. These would be more difficult to spot.

A space power such as the U.S. could remove micro- and nanosatellites from orbit by force if it so chose. More difficult would be the new generation of satellites under development in SSTL’s laboratories. Prototypes of picosatellites have been built that are not much bigger than a pencil in length, with a butane power source that would make them able to navigate through space. And even smaller satellites are possible: credit-card-sized machines, with cameras and radio communications built in.

These tiny objects would float in space in little clouds, each communicating with one another and the ground and beaming around messages and images. Many individual satellites could be deployed without affecting the behavior of the group. These devices would be very inexpensive and could be launched in clouds from missile launchers in the back of rockets as micro- and nano-satellites are today. Professor Sir Martin Sweeting believes he will have the technology for picosatellites in place within seven years.

The Arms Control Search For Nirvana

In spite of the obvious futility of seeking to limit the proliferation of technology that makes such potent miniature space systems possible, the arms control community continues to press for agreements to do so. And this long-standing demonstration of "the triumph of hope over experience" is exploited by many who seek to impede U.S. space programs while advancing their own.

For example, China leads in the international call to "prevent an arms race in space" – or to prevent the "militarization of space." No doubt, these calls are just the diplomatic arm of China’s strategy to develop a serious military space capability while seeking to impede similar U.S. developments14 – and they resonate in the international scene with concerns expressed by a number of nations including among long-standing U.S. allies.

These international pressures are exacerbated by some in the U.S. Congress who seek to restrain the application of U.S. technology to develop effective military space systems. For example, Congressman Dennis Kucinich (D-OH) has repeatedly sought such restraints, e.g., HR3616, titled The Space Preservation Act of 2002, called for President Bush to

The writings of numerous Chinese military planners make clear that China well understands the important role space can play in supporting terrestrial military forces with reconnaissance, communications, navigational aids, etc. Furthermore, such writings also demonstrate China understands the potential of space weapons. See, for example, Chinese Views of Future Warfare, edited by Michael Pillsbury, National Defense University Press, U.S. Government Printing Office, 1997; and Michael Pillsbury, China Debates the Future Security Environment, National Defense University Press, U.S. Government Printing Office, 2000. Furthermore, “The Cox Report” – the 1999 unanimous, bipartisan report of the House Select Committee on U.S. National Security and Military Commercial Concerns with the Peoples Republic of China, published by Regnery Publishing – concluded on page 196 that “the PRC is believed to be developing space-based and ground-based anti-satellite laser weapons” – which would be of “exceptional value for the control of space and information.” The Cox Committee also concluded: “The PRC has the technical capability to develop direct ascent anti-satellite weapons.” More recently, China became the third nation to execute successfully a manned space mission, an important step in its long-term deliberate strategy to become a space power – with aspirations for lunar and deep space exploration, according to Luan Enjie, director of the China National Space Administration. With a GNP and federal budget five times that of Russia’s, China can easily outspend America’s former chief rival in a new space race. And China’s space program already is beginning to eclipse that of the European Space Agency, as observed by James Oberg in his September 15, 2003 Scientific American article, “China’s Great Leap Forward.”
work for a worldwide ban on weapons in space – “to preserve the cooperative, peaceful uses of space for the benefit of all humankind by prohibiting the basing of weapons in space and the use of weapons to destroy or damage objects in space that are in orbit, and for other purposes.” While such attempts have so far failed, they will undoubtedly be repeated in the months and years to come.

Of particular note is the summary report of Working Group 2 on Missile Defenses and the Uses of Space at the 52nd Pugwash Conference on Science and World Affairs, held in San Diego, CA on 12-14 August 2002. This product of some twenty-two working group members from eleven countries composes an early manifesto of arguments that will undoubtedly be further honed by those seeking to influence U.S. domestic and foreign policy out of a “fear that the vision of a small group of space warriors could lead to a condition of U.S. supremacy in space.” The final paragraph of their report reads:

Having discussed space policies and the possible future danger of an arms race in space the group came to the conclusion that in this very critical moment urgent action is needed. Pugwash can and should contribute to this by informing the public and parliaments about the danger of space weaponization. Again, the group thinks that no state has the right to put arms into space. Space belongs to all mankind and should only be used for peaceful and scientific purposes, international cooperation and prevention of conflicts. A costly arms race in space can be avoided if decisive steps by the international community are started now.15

Bottom Lines

It is hard to improve on the 2000 Commission to Assess United States National Security Space Management and Organization, chaired by now Defense Secretary Donald Rumsfeld:16

“...That U.S. space systems might be threatened or attacked in such contingencies may seem improbable, even reckless. However, as political economist Thomas Schelling has pointed out, “There is a tendency in our planning to confuse the unfamiliar with the improbable. The contingency we have not considered looks strange; what looks strange is thought improbable; what is improbable need not be considered seriously.” Surprise is most often not a lack of warning, but the result of a tendency to dismiss as reckless what we consider improbable.

“History is replete with instances in which warning signs were ignored and change resisted until an external, ‘improbable’ event forced resistant bureaucracies to take action. The question is whether the U.S. will be wise enough to act responsibly and soon enough to reduce U.S. space vulnerability. Or whether, as in the past, a disabling attack against the country and its people -- a ‘Space Pearl Harbor’ -- will be the only event able to galvanize the nation and cause the U.S. Government to act.

“We are on notice, but we have not noticed.”

15 Report of Working Group 2 – Missile Defenses and Uses of Space, 52nd Pugwash Conference on Science and World Affairs, 10-14 August 2002, UC, San Diego, La Jolla, CA; Catherine Kelleher and Jasjit Singh, Co-Covenors: Gstz Neuneck, Rapporteur.

July 31, 2000

Dear Mr. Chairman:

I’m writing to correct the record, relative to recent testimony before the Senate Armed Services Committee by Defense Secretary William S. Cohen that the technical basis for emphasizing ground-based missile defenses was based on choices made in 1991 by the Bush Administration. According to a report in the July 26, 2000, *Washington Post*, he told your Committee that the Bush Administration selected ground-based missile defenses in 1991 as more technically mature and capable of more rapid development than space-based and sea-based alternatives. This is entirely untrue – it is contrary to history with which I am most familiar and indeed helped write.

I was Director of the Strategic Defense Initiative Organization (SDIO) from mid-1990 until January 1993; thus, I had immediate cognizance of all ballistic missile defense matters in the era referenced by Secretary Cohen. Before then, as you know, I closely followed SDI developments from my U.S. Negotiator post at the Geneva Defense and Space Talks from 1985 through 1989. In early 1990, I conducted an independent review of the SDI program for then Defense Secretary Dick Cheney under a mandate from then President Bush and, in my March 1990 report to him, I recommended its redirection to the GPALS (Global Protection Against Limited Strikes) architecture. President Bush formally adopted this plan in January 1991—and I had by then been working vigorously to redirect the SDI program for over six months. GPALS included a National Missile Defense (NMD) segment consisting of 5-6 sites of ground-based interceptors, a Global Missile Defense (GMD) segment consisting of 1000 space-based interceptors, and a Theater Missile Defense (TMD) segment consisting of several systems with sea-, air-, and mobile ground-based interceptors. A global command-and-control system was envisioned to integrate these segments and robustly protect Americans at home as well as our overseas troops, friends and allies from up to 200 ballistic missile warheads launched by any nation.

In my 1990 independent review, I was briefed that the technology for space-based interceptors —*Brilliant Pebbles*— was technically mature and ready for formal development. This SDIO assessment was supported by independent reviews of the Defense Science Board, the JASONs and other technical groups. Furthermore, because of the global coverage of such space systems, it was clear that *Brilliant Pebbles* would be the lowest cost and the most militarily effective means of defending both the United States and our overseas troops, friends and allies. It could provide intercept opportunities against attacking ballistic missiles beginning as early as in their boost-phase, throughout their exo-atmospheric mid-course phase, and even into their high-altitude endo-atmospheric reentry phase. [An architecture consisting only of ground-based defenses would clearly be a prohibitively expensive way to attempt to provide such global defensive coverage.] In any case, I recommended that GPALS consist of layered defenses, including space-, air-, sea-, and ground-based segments. *Brilliant Pebbles* was the most cost-effective GPALS component, by far.

Focused R&D on the *Brilliant Pebbles* space-based interceptor system was begun by LtGen Jim Abrahamson, the first SDIO Director, in 1987. It was formally designated the “first to deploy” component of American strategic defenses by my immediate predecessor as SDIO Director, LtGen George Monahan, and so announced in a Pentagon press conference which he convened in March 1990—roughly simultaneously with my independent report to Secretary Cheney. Ground-based defenses were assigned to a follower role. Moreover, their programmatic success was expected to be dependent on widespread adoption of the cutting-edge technology being exploited by *Brilliant Pebbles*—an expectation which, regrettably, has never been realized.
LtGen Monahan established a Brilliant Pebbles Task Force within the SDIO to manage the weapons system acquisition and, on my watch beginning in about May 1990, a competition narrowed the contractor teams to two: ones led by TRW/Hughes and by Martin Marietta. In addition to my supervision as the Acquisition Executive for all missile defense programs, this acquisition process was under Defense Acquisition Board (DAB) oversight. With the approval of the Defense Acquisition Executive, Brilliant Pebbles became SDIO’s first approved Major Defense Acquisition Program (MDAP) in 1991. Had this program been allowed to continue, the life cycle cost of the resulting constellation of 1000 Brilliant Pebbles was then expected to be about $11 billion (in 1991 dollars), which included replacing each satellite once and the costs of full system operations for 20 years. These cost estimates underwent the usual scrutiny of the formal DAB process. If we had been provided the needed enabling policy (freedom from Article V of the ABM Treaty) and the necessary funding, I anticipated that first generation Brilliant Pebbles could have achieved initial defensive capability as early as in 1996.

The ground-based defense segment was not firmed up to anything like an equivalent status until well over a year later, and our progress was interlaced with the heated debate on Capitol Hill which led to the Missile Defense Act of 1991. I’m sure that you recall this period—since you were the primary author and a major proponent of that most welcome initiative after the Gulf War. Under intense Congressional pressure, memorably articulated to me personally by then SASC Chairman Senator Sam Nunn, I very reluctantly agreed to remove Brilliant Pebbles from its eminently deserved acquisition program status in 1992, in return for a Congressional commitment to begin deployment of a ground-based system “by 1996 or as soon as technologically possible” and, within the same statute, a formal promise that Brilliant Pebbles would receive “robust funding” as a technology demonstration program. Removing Brilliant Pebbles from its leading role most definitely was not a free will decision by the Bush Administration, contrary to Secretary Cohen’s recent suggestion.

[I hoped to return Brilliant Pebbles to a formal acquisition status as soon as I could persuade the Congressional powers-that-be of the unique maturity, effectiveness and cost efficiency of the technology. The statutory promise—formalized in the Missile Defense Act of 1991—of “robust” funding for this most promising space-based defensive layer was dishonored in 1992, as the legislative record unequivocally reads. Nevertheless, because of its technological maturity, Brilliant Pebbles could have been revived and built faster than the first ground-based NMD site. However, this point was rendered moot by Defense Secretary Aspin’s direction to completely terminate the program in early 1993—as he said, “taking the stars out of Star Wars.”]

Of course, I am recapitulating political, not technical or scientific, issues that limited development of Brilliant Pebbles. The undeniable scientific fact is that the Brilliant Pebbles technology was mature in 1991—as the Clementine deep-space mission so clearly demonstrated in 1994. This very successful technology demonstration program was formulated in my office immediately after the Senate floor debate on the 1992 Defense Authorization and Appropriation Bills made abundantly clear that Senator Nunn and his like-minded colleagues were committed to destroying the Brilliant Pebbles program. Barely two years later and at a cost of about $75 million, the Clementine deep-space probe space-qualified the first generation Brilliant Pebbles hardware (scavenged from the then-defunct Brilliant Pebbles program) and software in the first return to the Moon in 25 years—gathering over a million frames of high-resolution imagery in 15 spectral bands and discovering water in the polar regions of the Moon. The small Clementine team, which pioneered the “faster, cheaper, better” approach of which NASA Administrator Dan Golden is so fond, was given awards by NASA and the National Academy of Sciences for this most impressive achievement.

But to prove once again that no good deed goes unpunished, President Clinton used his short-lived line item veto authority in October 1997 to kill the proposed Clementine follow-on science program, a program roundly supported by the scientific community. In the associated press conference, National Security Council senior staffer Bob Bell made explicitly clear that the President’s veto was because the Clementine follow-on program was continuing to demonstrate ever more mature and capable technology that also could be applied to space-based defenses.

Meanwhile, the acquisition program for the ground-based defensive segment has also had a tortuous history. Because of the Congressional mandate in 1991, I worked throughout the Spring of 1992 with the DAB process to gain approval for the National Missile Defense segment of GPALS. As I testified in 1992, we were not able to frame a program to deploy at the first site by 1996; but with the needed funding, we believed we could begin operations with prototypical hardware at a Grand Forks, North Dakota site as early as in late 1997. Fully developed hardware could have been operational as early as in 2002. This program plan was fully coordinated through all of the DoD acquisition offices and submitted to the Congress on July 2, 1992, along with then Defense Secretary Cheney’s indication that he had directed it be implemented as a top national priority.
Congress did not provide the funds needed to reach this objective, but did appropriate $1.8 billion for FY1993. Notably, Congress dropped a specific date objective (1996 in the 1991 Act) and called for deployment “by the earliest date allowed by the availability of appropriate technology and completion of adequate integrated testing of all system components.” This funding shortfall and redirection from Congress led to a programmatic restructuring and an 18-month slip in the event-driven program strategy demanded by the DAB. The Defense Authorization Conferees did endorse the DAB’s event-driven strategy as an appropriate low-to-moderate concurrency and risk program, observing that this plan could lead to deployment in about 2002. While noting that the Conferees did not yet endorse a decision to fabricate field prototypical elements at the initial site, the Conferees indicated they had no objection to planning for such a contingency as early as 1997 at the initial site. Of course, the Bush Administration’s 1992 plans to reach these 1997 and 2002 dates were contingent on Congress providing the necessary funds—which Congress did not do.

Before the end of my watch, I had re-framed the NMD program to be consistent with the FY1993 appropriations and the Missile Defense Act of 1992. As indicated in my January 20, 1993, End of Tour Report, the DAB had approved a program that, if fully funded, could have begun defensive system operations in North Dakota with fully developed hardware as early as in 2004 (an 18-month slip because Congress did not provide the FY1993 funds necessary to keep the schedule proposed in the July 2, 1992, Report to Congress)—and with prototypical hardware as early as in 2000. The total investment to begin operations at the first site was expected to be around $22-24 billion in FY1991 dollars. Brilliant Eyes, the associated space-based sensor system, was expected to cost $4-5 billion. And the full multi-site NMD system was expected to cost an additional $16-18 billion—again, in FY1991 dollars. This program plan was fully staffed through the Pentagon’s DAB with costing by independent OSD, Army, and Air Force—as well as SDIO—cost estimators. [Note that the first ground-based site was expected to cost about twice as much as the estimated life cycle cost of the Brilliant Pebbles segment of GPALS, which could have protected the entire world against limited attack. Simulations in 1991, using actual DSP data from the Gulf War, demonstrated that every SCUD launched by Iraq could have been intercepted by the Brilliant Pebbles constellation.]

In any case, the NMD program was fully funded in the out-year Pentagon budget: the Ground-Based Radar and space-based sensor (Brilliant Eyes) programs already were proceeding under fully funded, DAB-approved MDAPs, and Requests for Proposal had been issued to develop Ground-Based Interceptors—formal proposals from the GBI contractors were to arrive in Huntsville, Alabama within 30 days as I departed from SDIO on January 20, 1993. So, the Clinton Administration inherited a fully-approved NMD program—reviewed by the Pentagon’s DAB and consistent with the law embodied in the FY1993 Defense Authorization Act—to build the first site to begin defending the territory of the United States as early as in 2000.

But the Clinton Administration—oblivious to the FY1993 Authorization and Appropriation directives—cut the $1.8 billion appropriated to develop the ground-based NMD system to $0.4 billion and returned unopened to the proposing GBI contractors their system development bids. The previously fully funded outyear NMD programs were cut by 80-percent. Ground-Based Radar development for NMD was discontinued—although related development continued because the THAAD GBR is part of the same radar family. Programs for space-based systems were sharply curtailed (as in the case of Brilliant Eyes) or eliminated completely (as in the case of Brilliant Pebbles). Even the Clinton’s administration avowed top priority Theater Missile Defense programs were cut by 25 percent—scuttling the Navy’s missile defense programs and boost-phase intercept technology demonstrations. Other technology programs to cope with the development of likely offensive countermeasures were also sharply cut—leaving current programs open to substantial criticism. Of great importance, the vision was lost for integrating the command-and-control system for forward-based TMD systems with a homeland NMD system.

In essence, these actions effectively destroyed the Nation’s space-based missile defense options for the following decade. They also severely handicapped technical prospects for sea- and ground-based defenses, which could have benefited greatly from exploitation of the more mature key technologies that had been developed for space-based defenses in the 1980s and early 1990s.

It is simply incorrect to assert that technology for ground-based systems was more mature in 1991—the opposite was the case then and is, in fact, still the case. Indeed, ground-based systems could greatly benefit even today from exploiting the space technologies developed under the SDI program—which have continued to mature without support from the Pentagon’s missile defense programs. It is shameful that the Clinton Administration has blocked the transfer of such technologies—presumably because their “Star Wars” origins make them politically incorrect.
Incidentally, review of the tortured history (since my 1990 independent review for Secretary Cheney) of the development of sea-based defenses would demonstrate that they, too, can be built sooner, cheaper, and better than ground-based defenses. While being much more cost-effective than ground-based systems from a technical perspective, both sea- and space-based defenses suffer from the same political problem—Article V of the ABM Treaty blocks their development, testing, and deployment, if they have NMD capability. So the fact that they are less expensive, more militarily effective, and can be built faster from a technical perspective will be of no defensive significance to the United States so long as the ABM Treaty continues to bind the hands of America’s engineers. Furthermore, the fact that sea-based systems can easily be given NMD capability has led to a “dumbing-down” of TMD systems we are building to protect our overseas troops, friends and allies—all to avoid their having any NMD capability.

While I would have preferred an agreement with Russia along the lines the Bush Administration was discussing with Russia after President Yeltsin’s January 1992 proposal to work together to build a joint global defense, I believe further negotiations about the ABM Treaty are no longer wise because of the imminent threat, as made clear by the Rumsfeld Commission. The Clinton Administration broke off those talks in 1993 and instead declared its allegiance to a restrictive interpretation of the ABM Treaty, which it has sought to “strengthen”—adding further restrictions that make more difficult even building effective theater defenses. We need now to build as soon as possible the most effective defenses we can for Americans at home as well as our overseas troops, friends, and allies. I believe this means moving away from the ABM Treaty immediately and building the most effective sea- and space-based defenses we can as soon as possible. If Russia wants to work with us to help build effective defenses for the world community—perhaps along the lines of boost-phase defenses as recently suggested by President Putin—that would be a welcome development. We should be willing to work together with all our friends and allies to build effective defenses for us all. But we need our enslavement to the ABM Treaty to end forthwith.

In summary, SDIO’s history offers no support for the revisionist account of the relative maturity of ground- and space-based missile defense technologies in the early ’90s recently offered to your Committee by Secretary Cohen (though I have no doubt as to his personal good faith in proffering such an account). Indeed, the historical truth is precisely the opposite of the impression his remarks conveyed. I urge the Committee to take into account this history in its future deliberations.

I appreciate the opportunity to correct the record on this potentially significant point. I would be pleased to discuss these issues further with you.

Sincerely yours,

Henry F. Cooper, Ph.D.
Introduction

In simple terms, missile defense systems consist of three basic components: sensors that detect and track missiles and missile warheads, weapons that intercept and destroy missiles and warheads, and battle management systems that integrate sensors and weapons into a coherent system. Regarding interceptors, there are two basic types: those that destroy their targets by means of an explosive warhead and those that physically collide with their targets. Interceptors of the latter type are known as hit-to-kill (HTK) interceptors or kinetic kill vehicles (KKV).

The principles behind kinetic kill vehicles were articulated in as early as 1960 in Project Defender, an inventory of missile defense technologies completed by the Department of Defense's Advanced Research Projects Agency. Given the state of technology when Defender started, the accepted wisdom was that destroying an ICBM warhead required the use of a nuclear-tipped interceptor. However, as Defender proceeded, faith in the accepted wisdom eroded. A July 1960 Defender paper put the matter as follows:

Intuitively, one feels, that in trying to intercept anything traveling at ICBM velocities, the resultant miss distance would be large. Until recently, systems considerations have been based on the premise that miss distances would be of the order of one or two hundred feet. This dictated the use of nuclear warhead with its attendant high cost and weight, and other disadvantages. During our space based interceptor studies, consideration of a light weight, 300 lb., interceptor using an IR seeker led to the conclusion that miss distances of 10 to 30 feet could be achieved. At these distances, fragment type warheads exploiting hypervelocity impact for kill appeared reasonable against tankage, motors, and other parts of the ICBM in boost. Further study indicated that a cheap effective warhead could be built weighing as little as 2 lbs.¹

Not only did it begin to appear that lightweight interceptors armed with conventional explosives were feasible, but even hit-to-kill interceptors. In the words of the Defender paper:

Computer simulation runs on several types of interceptors weighing about 50 lbs., and using IR homing have resulted in miss distances of one or two feet. This certainly indicates hypervelocity impact kill could be employed. Incidentally, a nose cone traveling at ICBM velocities in collision with one pound of material releases the energy equivalent of 6 pounds of TNT. In a word, the kinetic energy at that velocity exceeds the chemical energy available at that mass.²

Another point to emerge from Project Defender was the advantages that accrue to the defense from using space-based interceptors to attack and destroy ICBMs while they are still in their boost phase. As the 1960 Defender paper put the matter:

A ballistic missile is more vulnerable in its propulsion or boost phase then in any subsequent part of its trajectory. At the same time, its identity is most difficult to conceal. These circumstances immediately suggest an early intercept system as an ideal solution to the defense problem. Unfortunately, enemy missiles are relatively inaccessible during this phase. So far, the only promising defense system concept has been a space based or satellite borne interceptor. Such a system requires many thousands of interceptors in space, but at a given instant only a small fraction will be in a position to attack. The economic feasibility of such systems is heavily dependent upon equipment reliability and upon enemy countermeasures.³

The remarks about economic feasibility should be borne in mind, as they will surface prominently later in this history of Brilliant Pebbles (BP), a space-based, kinetic kill interceptor that was part of President Ronald Reagan’s Strategic Defense Initiative (SDI) program. During its brief life span, Brilliant Pebbles became the central element of the SDI program. From their orbits around the earth, BP interceptors were to be capable of destroying Soviet ICBMs during their

boost phase, eliminating their multiple warheads and decoys before these could be dispersed. In this way, a single Brilliant Pebbles interceptor could destroy as many as ten Soviet warheads. This pivotal role makes the BP story crucial to the broader history of the SDI program.

The Origins of Brilliant Pebbles

By the early eighties, a number of strategic analysts had begun to worry that the Soviets were about to achieve a first strike capability that would allow them to cripple U.S. strategic retaliatory forces and still retain enough nuclear weapons to destroy America’s cities. This situation led the Joint Chiefs of Staff in February 1983 to recommend to President Ronald Reagan that the U.S. begin to place greater emphasis in its strategic plans on developing missile defenses.

Having come to office favorably disposed toward strategic defenses, President Reagan was highly receptive to this message. In a nationally televised speech on 23 March 1983, the president announced his decision to launch an expanded research and development program to see if strategic defenses were feasible. In April 1984, following a year of technical and strategic studies to determine how best to pursue the president’s goal, the Strategic Defense Initiative (SDI) Organization was chartered under the leadership of its first director, Lt. Gen. James A. Abrahamson of the U.S. Air Force. This organization was to carry out the SDI program of research and development to resolve the feasibility issue.

For several years before the SDI program was started, there had been considerable interest in developing directed energy weapons (DEW) as a counter to ballistic missiles. However, it was becoming apparent when SDIO was established that DEW technology was immature and that it would require far too much money to develop effective DEW weapon systems for a near-term missile defense system. As a result, the focus shifted toward the development of HTK systems as demonstrated in the June 1984 Homing Overlay Experiment (HOE) conducted by the U.S. Army and the September 1986 Delta 180 experiment carried out by SDIO.

By the winter of 1986, Secretary of Defense Caspar Weinberger and General Abrahamson had concluded that the SDI program had advanced to the point where it was time to entertain a strategic defense system into the defense acquisition process. On 17 December 1986, Weinberger briefed President Reagan on an architectural concept that included a constellation of orbiting interceptors that would be able to destroy Soviet ICBMs during their boost phase, thereby destroying all the warheads and decoys aboard the missiles before they could be dispersed in space. President Reagan approved the concept; and in the summer of 1987, SDIO presented the architecture for review by the Defense Acquisition Board (DAB), which then recommended approval of the concept by the Secretary of Defense. Weinberger accepted the recommendation in September 1987.

Known formally as the Strategic Defense System (SDS) Phase I Architecture, the system concept approved by Weinberger included six major acquisition programs. These were the boost surveillance and tracking system (BSTS), the space-based interceptor (SBI), the battle management/command and control and communications system, the space-based surveillance and tracking system (SSTS), the ground-based surveillance and tracking system (GSTS), and the exoatmospheric reentry vehicle interceptor system (ground-based interceptor). When combined in accordance with the architectural concept, these elements would form a multi-tiered defense that could attack Soviet missiles and warheads throughout their flight. The operational effectiveness goal for this system was spelled out by the Joint Chiefs of Staff in a 23 June 1987 memorandum.

The space-base elements of SDS Phase I, especially the space-based interceptor (SBI), presented several problems. In addition to being inherently distasteful to elements of America’s political leadership that opposed weapons in space, 7 SBI

5 Baucom, Origins of SDI, pp. 129-134, 192-196.

6 Caspar W. Weinberger, Fighting for Peace: Seven Critical Years in the Pentagon (New York, N.Y.: Warner Books, 1990), pp. 323-24; Jack [John] Donegan to General [James A.] Abrahamson, Memorandum, 2 January 1987, with attachments. Weinberger claimed that the meeting with Reagan occurred on 19 December; a draft memorandum for Weinberger’s signature attached to Donegan’s memorandum indicates that the meeting occurred on 17 December. I have taken the date from the Donegan memorandum, as it is a contemporaneous document and Weinberger’s memoir was prepared some years after the event.

7 Fred Barnes, “White House Watch: Brilliant Pebbles,” The New Republic, 1 April 1991, p. 11. Barnes’s article deals with BP in the context of GPALS and had this to say about congressional opposition to space-based systems: “The land (and sea) parts aren’t controversial. Sam Nunn, the chairman of the Senate Armed Services Committee, and other Democrats look favorably on them. It’s the space part—not only Brilliant Pebbles but also sensors known as Brilliant Eyes, which guide ground-based missile defenses—that draws criticism. Why? Because if deployed, the space-based elements would violate the Anti-Ballistic Missile (ABM) Treaty of 1972.”
would be expensive and drive the cost of the architecture up.8 Moreover, all space-based systems in the architecture would be vulnerable to attack by anti-satellite systems (ASAT) that the Soviets might develop.

In the case of SBI, the vulnerability problem was compounded by the system’s design. It was to be a large garage satellite that would berth multiple interceptors until they had to be fired at attacking missiles. This meant that a single Soviet ASAT could destroy the garage and its suite of interceptors. The solution to these difficulties emerged from the work of Dr. Lowell Wood, a physicist from Lawrence Livermore National Laboratory.

After discussing the SBI problems with other missile defense experts, Wood concluded that small, autonomous interceptors might offer a solution to the vulnerability and cost problems associated with a space-based interceptor system. He then conducted a personal inventory of applicable technologies and concluded that autonomous interceptors could be produced using technology that could be bought off-the-shelf, much of it only a little advanced over mass-produced consumer and technical professional electronics: video camcorders, scientific work stations and the like. Though this result was striking enough, it was even more astonishing to total up the likely costs: it seemed likely that a simple, small kinetic kill vehicle seeker package composed of such elements could be mass-produced for a few tens of thousands of dollars, moreover in the here-and-now.9

Thus, this new interceptor was to “be small, cheap and smart. Most important, it would have none of the vulnerabilities that came with big tracking satellites or groups of interceptors housed in orbiting garages.”10

As his work continued, Wood gained entree to General Abrahamson and began briefing the General on the new interceptor concept. By the fall of 1987, Abrahamson was sufficiently impressed with the concept to visit Lawrence Livermore National Laboratory where he watched a computer simulation of Brilliant Pebbles in operation, inspected hardware Wood had assembled, and talked with laboratory personnel. Based on this trip, Abrahamson ordered a substantial increase in funding for Brilliant Pebbles.11

A few months later, Wood introduced the public to the new interceptor concept and coined its name. Speaking at a conference in Washington, D.C., he described a miniaturization process that would lead to the emergence of “brilliant pebbles” from existing “smart rocks” like the Army’s HOE vehicle and SDIO’s Delta 180 test vehicle. The new interceptor, he argued, would be designed to be brilliant, not merely smart, and to have far better than human vision, not just crude imaging systems, so that the defensive system architecture is simply the constellation of brilliant pebbles, and nothing else. Each pebble carries so much prior knowledge and detailed battle strategy-and-tactics, computes so swiftly and sees so well that it can perform its purely defensive mission adequately, with no external supervision or coaching. Complexity, durability, reliability and testability issues in such architectures thereby either simplify to readily manageable levels, or else vanish entirely.

Furthermore, Wood believed that BP interceptors might eventually be made so small (under a single gram in mass) that they would possess too little kinetic energy to assure destruction of an armored ICBM. In short, the lower limit on the size

8 By April 1988, the costs of the Phase I system had increased from $40 to $60 billion to $75 to $100 billion. This increase had led the Strategic Forces Subcommittee of the Senate Armed Services Committee to question General Abrahamson about the causes of the cost increase when he appeared before the subcommittee on 18 April 1988. (Abrahamson Pressed on SDI Cost,” Aerospace Daily, 19 April 1988, p. 102, as reprinted in Office of Assistant Secretary of Defense for Public Affairs, Current News, 21 April 1988, p. 9.) A Washington Times article on 19 April claimed that the cost for the first phase of SDI could go as high as $150 billion. (Paul Bedard, “U.S. Must Decide on ABM by 1993, SDI Chief Warns,” Washington Times, 19 April 1988, pp. A1, A4, as reprinted in Office of Assistant Secretary of Defense for Public Affairs, Current News, 21 April 1988, p. 6.) The SDI Monitor said that the cost of orbiting several hundred SBI garages, each housing ten interceptors, would be “ruinous.” Faced with cost estimates of a $115 billion for an initial strategic defense system, SDIO last year decided to shift most sensor and SBI fire control work to space surveillance and tracking satellites (SSTS). The new design cut costs by $40 billion. Under the revamped design, battle management computers would fly on SSTS satellites. The computers would use information from SSTS sensors and six boost surveillance and tracking satellites (BSTS) to control the space-based interceptors flying 1,000-1,500 kilometers below them. But Monahan is uneasy with the decision to place heavy reliance on a constellation of only 18 SSTS satellites. “They become fat, juicy targets,” he told reporters. “We’ve got a dependency [on SSTS] that I’m not wild about.” (“SDIO Takes a Hard Look at Brilliant Pebbles,” SDI Monitor, 29 May 1988, p. 139.)

9 For information on the origins of the Brilliant Pebbles concept, see Lowell Wood and Walter Scott, “Brilliant Pebbles,” Research Completed under the auspices of the Department of Energy, Contract W-7405-eng-48, n.d. [internal evidence indicates that this paper was published after the end of January 1989 when James Abrahamson had retired from the Air Force], p. 4 (hereafter referred to as Wood and Scott, “Brilliant Pebbles”); William J. Broad, Teller’s War: The Top-Secret Story Behind the Star Wars Deception (New York: Simon & Schuster, 1992), pp. 251-52. For the quoted material, see Wood and Scott, “Brilliant Pebbles,” p. 4.

10 Broad, Teller’s War, pp. 252-53.

of a Brilliant Pebbles interceptor was the mass it required to be lethal when it struck its target. Certainly, Wood concluded, it was possible at that time to develop an effective Pebble that would weigh between 1.5 and 2.5 kilograms, which was about 100 times the mass needed to assure destruction of an armored missile.12

To provide effective missile defenses under conditions of the worst-case attack scenario could require as many as 100,000 Pebbles in orbit. However, Woods believed a more reasonable estimate of the size of the BP constellation was about 7,000. Even taking the worst case scenario would not make Brilliant Pebbles prohibitively expensive, since Wood expected the cost of a single BP to be driven down as low as $100,000 through mass production techniques and the use of what was essentially off-shelf, commercial technology. This meant that a constellation of 100,000 interceptors would cost about $10 billion.13 Moreover, given their small mass, it should be fairly inexpensive to orbit the entire constellation.

In its mature form, the BP concept called for the interceptors to be housed in protective cocoons or “life-jackets.” These devices would provide housekeeping support (communications, power, etc.) to the Pebbles until such time as a missile attack was detected. At this time the Pebbles would be armed for combat and shed their life jackets.14

As Wood was developing a more definitive version of the Brilliant Pebbles concept, SDIO was conducting its own search for answers to the cost and vulnerability problems associated with the Phase I architecture. Part of this effort was the Space-Based Element Study (SBES) that began in May 1988 under the leadership of Dr. Charles Infosino. General Abrahamson had initiated the study to help SDIO redesign the SBI, and he directed the SBES team to consider Brilliant Pebbles in its review of SBI candidates. The result was the first systematic evaluation of Brilliant Pebbles by an independent body and an endorsement of the BP concept. Based on the results of this review, Abrahamson concluded that SDIO should forge ahead with Brilliant Pebbles and perhaps even accelerate the program.15

While the SBES team was at work, the U.S. Air Force Space Division was conducting another review of the SBI element. The results of the Space Division review, along with information about other SBI developments, were reported to the Secretary of Defense in the fall of 1988. The Space Division report stated that work with sensors and signature data, along with trade-off studies, indicated that individual interceptors could directly engage re-entry vehicles using their own sensors, thereby eliminating the requirement for sensors on carrier vehicle satellites. Also, new data suggested that interceptor fly-out time could be doubled, while fly-out velocity could be increased twenty-five percent, resulting in greatly increased range for the SBI interceptors. The improved performance of interceptors, coupled with improvements in the ERIS ground-based interceptor, meant that the number of carrier vehicles in the SBI constellation could be reduced by over fifty percent from the original number of several hundred. These changes translated into lower projected costs for research, development, and acquisition. As a result, the cost of the SBI constellation dropped to $18 billion (FY1988 constant dollars), a reduction of sixty-six percent from earlier projected costs. The Space Division report noted that the analytical work associated with both the SBES and the development of the Brilliant Pebbles

12 Lowell Wood, “Concerning Advanced Architectures for Strategic Defense,” Paper Prepared for Presentation at the Conference on the Strategic Defense Initiative: The First Five Years, Washington, D.C., 13-15 March 1988, pp. 4-7. One clear advantage of small-sized interceptors was a reduction in the cost of orbiting a constellation that would have to include several thousand pebbles. Indeed, consideration was given to orbiting BP interceptors using rail guns.

13 Wood, “Concerning Advanced Architectures for Strategic Defense,” pp. 7-8. Regarding a worst-case scenario, Wood gave as an example “an instantaneous silo-dumping attack with maximum clustering of mobile launchers—the worst case imaginable.” (p.8) In Wood and Scott, “Brilliant Pebbles,” p. 8, the authors give 7,000 BPs as “a reasonable median number which fully satisfies the JCS tasking for Phase I strategic defense all by itself.”

15 Charles Infosino, Discussion with Donald R. Baucom, 14 July 1993, p. 1; Strategic Defense Initiative Organization, Final Technical and Scientific Report: 16 May 1988-30 September 1988, 14 October 1988, Executive Summary, pp. 1-2. The comment about the SBES study constituting the first systematic review of Brilliant Pebbles was made by Dr. Charles Infosino during a discussion with Ballistic Missile Defense Organization (BMDO) Historian Donald R. Baucom on 21 April 1993. Information on the origins and purposes of the study can be found inside the title page of the report on the “Report Documentation Page.” This study was completed under contract SDIO84-88-C-0019. In addition to Infosino, the following were government employees who served as members of the SBES: Dean Judd (SDIO), Fred Hellrich (Navy/NRL), Ed Wilkinson (Army/SDC), Alan Weston (Air Force/AFAL), Dwight Duston (SDIO), and David Finkelman (USSPACECOM). Employees of FCRC/National Laboratories who provided technical support were: Bob Erlane (POET/Aerospace), Troy Crites (POET/Aerospace), T. J. Trapp (LANL), Chris Cunningham (LLNL), John Dassoulas (JHU/APL), Steve Weiner (MIT/LL), and Howard Wishner (Aerospace). A team of thirteen analysts provided by four companies also supported the effort. Members of the SBES team are listed on p. 53 of their report.
concept contributed to simplifications and improvements in the SBI element.\footnote{16}

As 1988 was ending, then, SDIO’s analytical and redesign work was pushing the SBI concept toward the completely autonomous mode of operation that was a hallmark of the Brilliant Pebbles concept. One could now begin to think in terms of either defending the carrier vehicle against ASATs or simply dispersing the interceptors. If one chose the latter course of action, the interceptors would remain capable of destroying ICBMs and warheads while they themselves became relatively invulnerable to ASAT attack. The progress made with the SBI concept in the year following the first DAB review was summed up by an SDIO report stating that the SBI element of October 1988 departs from the initial SBI element concept in several respects. The initial element focused on autonomous SBI CV [carrier vehicle] satellites for communications, battle management, fire control sensing, and SBI survivability. With this approach, significant complexity and cost accrue to the CV satellite and in turn limit the performance for the space-based interceptor. The current SBI element concept changes the emphasis to increasing the performance of the interceptor, with a corresponding simplification of the CV satellite.\footnote{18}

In short, SBI was rapidly evolving toward a concept very similar to Brilliant Pebbles.\footnote{18}

\begin{itemize}
\item As 1988 was ending, SDIO’s analytical and redesign work was pushing the SBI concept toward the completely autonomous mode of operation that was a hallmark of the Brilliant Pebbles concept. One could now begin to think in terms of either defending the carrier vehicle against ASATs or simply dispersing the interceptors. If one chose the latter course of action, the interceptors would remain capable of destroying ICBMs and warheads while they themselves became relatively invulnerable to ASAT attack. The progress made with the SBI concept in the year following the first DAB review was summed up by an SDIO report stating that the SBI element of October 1988 departs from the initial SBI element concept in several respects. The initial element focused on autonomous SBI CV [carrier vehicle] satellites for communications, battle management, fire control sensing, and SBI survivability. With this approach, significant complexity and cost accrue to the CV satellite and in turn limit the performance for the space-based interceptor. The current SBI element concept changes the emphasis to increasing the performance of the interceptor, with a corresponding simplification of the CV satellite.
\item In short, SBI was rapidly evolving toward a concept very similar to Brilliant Pebbles.
\end{itemize}

Verifying the Brilliant Pebbles Concept: A Season of Studies

As 1989 began, General Abrahamson’s tenure as SDIO Director was ending.\footnote{19} Yet, the design for SBI, the principal weapon system in the Phase I architecture, was still far from settled. This meant that Abrahamson’s replacement, Lt. Gen. George L. Monahan, Jr., USAF, would immediately face a major architectural decision: what should be the structure of the space-based portion of the SDS Phase I system?

A few days after his retirement, Abrahamson submitted an end of tour (EOT) report that strongly endorsed Brilliant Pebbles. He was convinced that BP was the key to an effective, affordable space-based architecture and believed that BP could be operational in five years at a cost of less than $25 billion. Therefore, he recommended pushing Brilliant Pebbles aggressively. “This concept,” he wrote, “should be tested within the next two years and, if aggressively pursued, could be ready for initial deployment within 5 years.” Moreover, “once deployment has begun and a competitive industrial base is established, the system could be scaled to higher levels of effectiveness for ever decreasing incremental costs.”\footnote{20}

This last point was important, for it said that Brilliant Pebbles could meet one of the critical requirements for deployment that were delineated in the Nitze criteria that had been adopted under the Reagan administration to determine whether or not a missile defense system, once developed, should be fielded. According to these criteria, any missile defense system deployed must be survivable and cost effective at the margin. The latter criterion meant essentially that it had to cost more to develop offensive countermeasures than to devise defensive responses.\footnote{21}

As 1988 was ending, SDIO’s analytical and redesign work was pushing the SBI concept toward the completely autonomous mode of operation that was a hallmark of the Brilliant Pebbles concept. One could now begin to think in terms of either defending the carrier vehicle against ASATs or simply dispersing the interceptors. If one chose the latter course of action, the interceptors would remain capable of destroying ICBMs and warheads while they themselves became relatively invulnerable to ASAT attack. The progress made with the SBI concept in the year following the first DAB review was summed up by an SDIO report stating that the SBI element of October 1988 departs from the initial SBI element concept in several respects. The initial element focused on autonomous SBI CV [carrier vehicle] satellites for communications, battle management, fire control sensing, and SBI survivability. With this approach, significant complexity and cost accrue to the CV satellite and in turn limit the performance for the space-based interceptor. The current SBI element concept changes the emphasis to increasing the performance of the interceptor, with a corresponding simplification of the CV satellite.

In short, SBI was rapidly evolving toward a concept very similar to Brilliant Pebbles.

\begin{itemize}
\item As 1988 was ending, SDIO’s analytical and redesign work was pushing the SBI concept toward the completely autonomous mode of operation that was a hallmark of the Brilliant Pebbles concept. One could now begin to think in terms of either defending the carrier vehicle against ASATs or simply dispersing the interceptors. If one chose the latter course of action, the interceptors would remain capable of destroying ICBMs and warheads while they themselves became relatively invulnerable to ASAT attack. The progress made with the SBI concept in the year following the first DAB review was summed up by an SDIO report stating that the SBI element of October 1988 departs from the initial SBI element concept in several respects. The initial element focused on autonomous SBI CV [carrier vehicle] satellites for communications, battle management, fire control sensing, and SBI survivability. With this approach, significant complexity and cost accrue to the CV satellite and in turn limit the performance for the space-based interceptor. The current SBI element concept changes the emphasis to increasing the performance of the interceptor, with a corresponding simplification of the CV satellite.
\item In short, SBI was rapidly evolving toward a concept very similar to Brilliant Pebbles.
\end{itemize}

Verifying the Brilliant Pebbles Concept: A Season of Studies

As 1989 began, General Abrahamson’s tenure as SDIO Director was ending.\footnote{19} Yet, the design for SBI, the principal weapon system in the Phase I architecture, was still far from settled. This meant that Abrahamson’s replacement, Lt. Gen. George L. Monahan, Jr., USAF, would immediately face a major architectural decision: what should be the structure of the space-based portion of the SDS Phase I system?

A few days after his retirement, Abrahamson submitted an end of tour (EOT) report that strongly endorsed Brilliant Pebbles. He was convinced that BP was the key to an effective, affordable space-based architecture and believed that BP could be operational in five years at a cost of less than $25 billion. Therefore, he recommended pushing Brilliant Pebbles aggressively. “This concept,” he wrote, “should be tested within the next two years and, if aggressively pursued, could be ready for initial deployment within 5 years.” Moreover, “once deployment has begun and a competitive industrial base is established, the system could be scaled to higher levels of effectiveness for ever decreasing incremental costs.”\footnote{20}

This last point was important, for it said that Brilliant Pebbles could meet one of the critical requirements for deployment that were delineated in the Nitze criteria that had been adopted under the Reagan administration to determine whether or not a missile defense system, once developed, should be fielded. According to these criteria, any missile defense system deployed must be survivable and cost effective at the margin. The latter criterion meant essentially that it had to cost more to develop offensive countermeasures than to devise defensive responses.\footnote{21}

On 26 July 1988, General Abrahamson informed Secretary of Defense Carlucci of his intent to retire effective 31 January 1989. Abrahamson stated that “a new Administration will undoubtedly have different ideas or approaches to SDI. Therefore, I reluctantly have concluded that the program will best be served by allowing new leadership to represent new policy and direction.” Abrahamson selected the end of January 1989 as the effective date of his retirement to be sure there would be sufficient time to assure a smooth transition to the new Bush administration. James A. Abrahamson, Memorandum for Secretary of Defense, Subject: “Retirement for Active Duty—Action Memorandum,” 26 July 1988.\footnote{20} James A. Abrahamson, Memorandum for Deputy Secretary of Defense, Subject: “End of Tour Report,” “Information Memorandum,” 9 February 1989, Attachment 1, “Lt General Abrahamson’s Recommendations: SDI Breakthrough Architectures,” pp. 1-1 through 1-3.\footnote{21}

About three weeks before Abrahamson submitted his EOT report, President George Herbert Walker Bush had taken office. With clear signs on the horizon that the Cold War was ending, the new Bush administration immediately launched a major review of American security requirements. Included here was an examination of the structure and objectives of the SDI program with this review encompassing possible future roles for missile defense. In the emergent security environment envisioned by Bush’s instructions, these roles might vary from serving as the strategically dominant weapons system to protecting against Third World missile attacks or “the accidental launch of Soviet systems.”

In June 1989, President Bush issued National Security Directive 14 pertaining to the SDI program. Based on the findings of his administration’s reassessment of national security requirements, the President had concluded that the goals of the SDI program remained “sound” and that “research and development of advanced technologies necessary for strategic defenses” should continue to be a major U.S. response to the “Soviet challenge.” In this R&D effort, “particular emphasis” was to be placed on “promising concepts for effective boost-phase defenses, for example, Brilliant Pebbles.” Bush also directed Secretary of Defense Richard Cheney to commission an independent review of the SDI program to see that the goals laid down in NSD-14 were carried out. This independent study was to be completed by 15 September 1989. As we shall see, when this review was submitted on 15 March 1990, it contained a strong endorsement of the SDI concept, which the report’s author, Ambassador Henry Cooper, considered essential to the success of the SDI program.

As these presidential instructions were being formulated, General Monahan was developing his own plans to evaluate Brilliant Pebbles. By May 1989, these plans included two technical feasibility studies by outside advisers, a Red/Blue evaluation to judge how well BP would deal with Soviet countermeasures, and a “bottom up” cost estimate.

Monahan had also developed a plan for getting his acquisition strategy approved by the DAB. Central to this plan was integrating the work being done on Brilliant Pebbles with “the on-going and planned activities of other SDI elements, especially…”.22

chally SSTs and SBI.” This would be accomplished through a fifth evaluation of the space-based component of the SDI architecture that would get under way in September 1989. By this time, the other evaluations of BP were to be completed; and their results would be assimilated into the September study. Then, in the late fall, SDIO would present the results of the September evaluation for approval by the DAB. Once the DAB accepted SDIO’s plans, the Air Force would execute the approved space-based program in conjunction with Lawrence Livermore National Laboratory. Monahan had hoped to win approval for this approach during an 8 May 1989 DAB review, which never occurred. Nevertheless, Monahan forged ahead with his plans.

One of the technical feasibility studies was conducted by JASON, a group of America’s top scientists, who worked under the aegis of MITRE Corporation and advised government agencies on defense and other technical issues. This study was conducted during June and July of 1989 and focused on the technical feasibility of BP’s component technology and of the battle management command, control and communications (BMC) system that was to be used with BP. In the process, the JASONs examined other interceptor concepts for comparison purposes.\(^2\)

In the Pentagon, it is common for the leader of a major study or his surrogate to brief the sponsoring agency on the findings of that study. On 23 August 1989, Dr. John M. Cornwall, a physicist from Cornell University and leader of the JASON BP review, briefed General Monahan and key members of missile defense community. He reviewed the strong points of the BP concept, which included the proliferation of the interceptors and their autonomous operation. He also noted that the concept was based on conservative technologies that had already been developed in large measure through the work of the military services, SDIO, and Lawrence Livermore National Laboratory. The bottom line in the JASONs findings was that there were no technological “show-stoppers” or fatal flaws in the BP concept. Moreover, he continued, the Brilliant Pebbles interceptor could probably be produced using current technology, although a better BP interceptor could be produced with technologies that were just a couple of years downstream.\(^42\)

The general points Cornwall made in his briefing were detailed in the written report filed by the JASONs on 3 October 1989. This report stated that research on lightweight proliferated, autonomous kinetic-kill interceptors using near-term and maturing technology deserves continuing support. It will be essential to avoid either excessive conservatism or excessive optimism in choosing which technologies to support; near-term but not off-the-shelf technologies may be mission-critical. Although there does not appear to be any obvious technological show-stopper, there are several problems which must be addressed: performance of readily-available technology; lack of hardness of commercial technology against a nuclear environment; and serious countermeasures threats.\(^26\)

These unanswered questions notwithstanding, BP’s general concept of autonomous interceptor operation offered important advantages. As the report put this matter:

>[I]t makes sense to attempt an autonomous system, at least with no SSTs and possibly without BSS. The extra constellation size needed (because of inefficiencies in selecting targets autonomously compared to central battle management) is likely to be less costly than the central battle manager, and, of course, avoids reliance on a small number of high-value or essential components which are hard to defend.\(^29\)

Regarding countermeasures, the JASONs noted the difficulty of developing effective devices and suggested how SDIO should deal with this issue. In the words of the report:

\(^26\) JASON (The MITRE Corporation), JASON Review of Brilliant Pebbles, Vol. I, Executive Summary, September 1989 (JSR-89-900), pp. 2-3; [Strategic Defense Initiative Organization], “Strategic Defense System Space-Based Architecture Fact Paper,” 9 February 1990. Although the date on the front of the JASON report says September 1989, the Report Documentation Page that is part of the front matter of the report gives its dates as 3 October 1989. Since the JASONs had found no major flaws in the Brilliant Pebbles concept, it was important that they state this finding in the strongest possible terms. Otherwise, detractors of the SDI program would use the report to flog the program, even though the report itself was a highly favorable endorsement of BP. The expression “no-show stoppers” was meant to be a categorical endorsement of Brilliant Pebbles that could not be misconstrued by the press. (O’Dean Judd to Donald Baucom, Subject: “Several,” Email, 19 March 2001, 10:45 a.m.; O’Dean Judd to Donald Baucom, Subject: “JASON Statement,” Email, 19 March 2001, 6:45 p.m.)
Anyone can invent countermeasures, but answering the question of which ones really work must (in most cases) await detailed studies and engineering development; those which are effective may be too costly, and there may be effective counter-countermeasures. Only a full red/blue team study with the best available people on both sides can really address these crucial issues...

The JASONs then listed six types of countermeasures (four classified and two unclassified) that merited further study.30

Overlapping the JASON study was the second technical feasibility study, which was completed by the Defense Science Board (DSB), a federal advisory committee established to advise the secretary of defense on technical issues. In June 1989, the DSB was directed to establish a Brilliant Pebbles Task Force to review the BP concept. The task force met six times between June and September with the various other groups, including the JASONs, that were examining the BP concept and completed its report at the end of December 1989. Like the JASONs, the DSB concluded that BP faced some technical problems that would have to be overcome, but found no fundamental flaws with the concept. The DSB report noted that the design of BP had thus far has been examined by a number of competent and independent groups. While these examinations had pointed to several areas for possible improvement, no fundamental flaws had been uncovered.31

The third evaluation of Brilliant Pebbles was a Red-Blue interactive countermeasures exercise completed in two formal phases, the first in July and August of 1989 and the second in September and October of 1989. The general conclusion of this study was that Brilliant Pebbles would be subject to the same countermeasures faced by all space-based elements in the SDI architecture, but faced no special problems in this area. The study’s major recommendation was that survivability features should be built into the BP system.32

The fourth study was a joint cost review that SDIO and the Air Force conducted between May and December 1989. Among other things, this review compared the costs of architectures based on the older SBI concept and the new Brilliant Pebbles concept. It concluded that the cost of the Phase I SDS architecture with Brilliant Pebbles would be $55 billion, as compared with the $69 billion cost for the Phase I system with SBI.33

As each of these four reviews was completed, its results were assimilated into the Space Based Architectural Study (SBAS), the fifth study called for in General Monahan’s May 1989 strategy. Based on its own findings and input from the other four reports, the SBAS would “evaluate the space-based elements of the Phase I Strategic Defense (SDS) architecture and determine whether the Brilliant Pebbles concept should become a part of the architecture.” SBAS findings would then become the basis for Monahan’s recommendations to the DAB regarding the structure of the space-based component of the SDS architecture. Monahan expected a final DAB decision by Thanksgiving 1989.34

30 JASON, Review of Brilliant Pebbles, pp. 10-12.
31 Defense Science Board, Report of the Defense Science Board on SDIO Brilliant Pebbles Space Based Interceptor Concept, December 1989, pp. 1-2; [Strategic Defense Initiative Organization], “Strategic Defense System Space-Based Architecture Fact Paper,” 9 February 1990. [p. 3]. Task force chairman, Robert R. Everett, submitted this report to the Secretary of Defense and the Deputy Secretary of Defense on 29 December 1989. (Robert R. Everett, Memorandum for Secretary of Defense and Deputy Secretary of Defense, Subject: “Final Report of the Defense Science Board on Brilliant Pebbles,” 29 December 1989.) The report was marked for official use only and carried a notice inside its front cover that distribution of the report was restricted to U.S. government agencies by direction of the Secretary of Defense. This notice carried the date of 3 March 1990. Terms of reference for this DSB study had called for the BP Task Force to review and evaluate four items relative to BP and report its findings in briefing format by September 1989. The four items were: the advantages of BP compared to SBI, the soundness of the required technology, the risks and costs in developing the BP demonstration-validation design, and the validity of the demonstration-validation flight experiment program. See Donald J. Atwood, Memorandum for the Chairman, Defense Science Board, Subject: “Terms of Reference—Defense Science Board Task Force on Brilliant Pebbles,” 28 August 1989.
32 BDM Corporation, Architecture Blue Team Analysis, Volume II, Brilliant Pebbles, Scientific and Technical Report (CDRL Item #A318) for Task Order No. 48 SDS, Prepared for the Strategic Defense Initiative Organization, 20 November 1989, pp. iii, I-1, 1-3; System Planning Corporation, Red/Blue Analysis of Post-Boost Vehicle Operations Countermeasure against Brilliant Pebbles, Volume I, Analysis, SPC Final Report 1335, November 1990, p. 1; [Strategic Defense Initiative Organization], “Strategic Defense System Space-Based Architecture Fact Paper,” 9 February 1990. The System Planning Corporation report indicates that in addition to the two formal parts of this Red-Blue exercise, a “quick look at BP occurred in May 1989.” This exercise showed that countermeasures could be effective and needed to be addressed in more detail. For this reason, the exercise team had recommended another round of exercises. (BDM Corporation, Architecture Blue Team Analysis, pp. I-13 - I-14.) Both the documents cited here are held by the BDMO Information Resource Center.
The SBAS team proceeded by comparing Brilliant Pebbles with two other interceptor concepts. The team found that all three concepts were comparable when analyzed against the expected missile threat; however, based on the advantage to the defense of proliferating its space-based interceptors, the team concluded that developmental work should be continued on only two of the three systems: Brilliant Pebbles and the “Gunrack” version of the original SBL.35

In addition to comparing interceptor concepts, the SBAS team decided to review SDS Phase I sensing requirements taking into consideration the increased sensing capabilities of new interceptors. Based on this review, the team concluded that the interceptors could engage warheads and post-boost vehicles without support from the Space-based Surveillance and Tracking System, but that some SSTs satellites would be required for surveillance purposes. As a result, the number of SSTs satellites required in an architecture that included proliferated space-based interceptors was only one-third the number approved by the DAB in October 1988. Where the Boost Surveillance and Tracking System was concerned, the study recommended that it remain a part of the Phase I architecture. While autonomous interceptors would ease the requirements levied on BSTS, neither the sensors of Brilliant Pebbles nor those associated with the Gunrack system could provide all the data made available by the BSTS. Finally, the SBAS determined that the number of Ground-based Surveillance and Tracking Systems in the architecture would have to increase by six to offset the loss of other capabilities.36

In addition to its analyses of the space-based components, the SBAS also compared the costs of four possible architectures: that reviewed by the DAB in October 1988 and one based on each of the three interceptors considered in the study. These cost estimates indicated that an architecture using either the Gunrack or Brilliant Pebbles would reduce the $69.1 billion cost of the October 1988 architecture by $7 to $13 billion. The architecture recommended by the SBAS had the following characteristics (all statements about increases or decreases in numbers of a component are relative to the October 1988 architecture):

• BSTS remained unchanged.
• SSTs reduced by two-thirds.
• Replace the earlier SBI with either the Gunrack or Brilliant Pebbles. (Development of both systems should be continued for at least awhile.)
• Several additional GSTSs would be required.
• The Ground-Based Radar and Ground-Based Interceptor would not be changed.
• The ground communications system for the command center element would have to be enhanced.37

In the fall of 1989, with the results of the various studies of Brilliant Pebbles becoming known, it was apparent to Monahan that he would soon have to secure DAB approval for significant changes to the established SDS architecture. On 20 September 1989, as the Space-Based Architecture Study was nearing completion, General Monahan advised John Betti, under secretary of defense for acquisition, that he would be prepared to present the study’s recommendation on the architecture to the Defense Acquisition Board during a review that was scheduled for 12 December 1989.38

About two weeks later, Betti agreed to this review, but set the date for 11 December. At the same time, he advised Monahan to be prepared for another DAB review in the spring of 1990, at which time SDIO would be expected to present “the Baseline for the Phase I Strategic Defense System.”39 This meant that SDIO would have only a few months to work out the details of a new architecture that would include Brilliant Pebbles.

DoD canceled the December DAB review, leaving Monahan in a difficult position. The new Brilliant Pebbles program had reached the point where it was necessary to initiate contract arrangements to start the development process. Yet, without some form of approval from DoD, Monahan could not proceed. This crisis was resolved when Dr. George Schneiter, head of the Strategic Systems Committee in Betti’s office, authorized Monahan to proceed with the “next steps” in the BP acquisition strategy.40 Over the next few months, Monahan

36 IBID, pp. 10-20.
37 IBID, pp. 21-25.
39 John Betti, Memorandum for Director, Strategic Defense Initiative Organization, Subject: “Defense Acquisition Board (DAB) Review of the Strategic Defense Initiative (SDI) Program,” 3 October 1989. The DAB that was to be held in the spring of 1990 was originally scheduled for the fall of 1989.
40 George R. Schneiter, Memorandum for the Under Secretary of Defense for Acquisition, Subject: “Strategic Defense Initiative (SDI) Program Review,” 16 January 1990; George R. Schneiter, Memorandum for the Under Secretary of Defense for Acquisition, Subject: “Strategic Defense Initiative (SDI) DAB Review,” 6 February 1990. In this second memo, Schneiter wrote: “In a previous memorandum, I discussed some outstanding SDI acquisition issues. Following your direction to deal with what I could at my level, I informed the SDI Organization they should take the next steps in their recommended Brilliant Pebbles acquisition approach.” Additionally, on 16 January 1990, General Monahan discussed the SDI program

Missile Defense, the Space Relationship, and the Twenty-First Century
would be largely on his own to manage the acquisition of Brilliant Pebbles. During this period, the BP concept was gaining momentum.

On 7 February 1990, General Monahan accompanied President George Bush to Lawrence Livermore National Laboratory (LLNL) where Lowell Wood briefed the President. It was also during this visit that Bush himself gave LLNL and the BP program a boost, lauding America’s national laboratories for “developing technologies to strengthen deterrence through strategic defenses.” Among the most promising of these new technologies, said the President said, was Brilliant Pebbles. 40

with Secretary of Defense Richard Cheney, who had advised Monahan that he expected the General to proceed with the program. Monahan interpreted these instructions as meaning that a DAB was not required for approval of his acquisition strategy for Brilliant Pebbles. Furthermore, the General laid out his plan for releasing the BP concept study RFP in the Commerce Daily Bulletin. 41

George L. Monahan, Jr., Interview with Donald R. Baucom, the Pentagon, Washington, D.C., 29 March 1990, p. 17; President George H. W. Bush, “Remarks by the President to National Employees of Lawrence Livermore Laboratory,” Lawrence Livermore Laboratory, San Francisco, California, 7 February 1990. Bush presented a general rationale for the pursuit of missile defenses, telling his Livermore audience:

Together with strategic modernization and arms control, programs like SDI—the Strategic Defense Initiative—and one of its most promising concepts, Brilliant Pebbles, complement our ability to preserve the peace into the 1990s and beyond.

If the technology I’ve seen today proves feasible—and I’m told it looks very promising—no war planner could be confident of the consequences of a ballistic missile attack. The technologies you are now researching, developing and testing will strengthen deterrence.

Even as we work to reduce arsenals and reduce tensions, we understand the continuing, crucial role of strategic defenses. Beyond their contributions to deterrence, they underlie effective arms control by diminishing the advantages of cheating. They can also defend us against accidental launches—or attacks from the many other countries that, regrettably, are acquiring ballistic missile capabilities.

In the 1990s, strategic defense makes much more sense that ever before, in my view.

So a vigorous research, development and testing program at our national labs will be as crucial as ever, as we adapt both the size and shape of our nuclear deterrent. We’re working on a significant reductions in arms—I think that’s what the world wants. I believe in it strongly. But to protect the American people, we will settle for nothing less than the highest confidence in survivability, effectiveness and safety of our remaining forces.

40 Henry F. Cooper, SDI Independent Review, 15 March 1990 (hereafter Cooper, Independent Review), Executive Summary, p. 2. Cooper would later claim that Edward Teller introduced him to the BP concept in 1988. “My subsequent all-day visit to Lawrence Livermore National Laboratory,” Cooper wrote, “persuaded me of the potential of the hardware under development.” See Henry F. Cooper, “Why Not Space-Based Missile Defense?” Wall Street Journal, 7 May 2001. Cooper claimed that 1000 BPs were expected to cost $11 billion in 1991 dollars. “This included all the costs of building and launching the Pebbles, operating them for 20 years, and replacing each Pebble once over the two decades. If fully funded, and without the constraining ABM Treaty, I believe the first-generation Pebbles could have begun operating as early as 1996.” For details on the charter for Cooper’s study, see Dick Cheney, Memorandum for Secretaries of the Military Departments, et. al., Subject: “Independent Review of the Strategic Defense Initiative Program,” 22 December 1989; Larry Burger, Memorandum for the Under Secretary of Defense (Acquisition), Subject: “Terms of Reference (TOR) for the Process Action Team on SDI,” 10 July 1990. Burger was an official in DDR&D[S&TNF].

41 Henry F. Cooper, SDI Independent Review, 15 March 1990, pp. 4, 25-29. For Cooper’s views on trends toward the increasing threat of limited missile attacks see pp. 1, 55-79.
central to any effective PALS system, since it would provide an overarching defense layer that would contribute to both theater defense and defense of the U.S. homeland. 44

The space-based element of PALS was to be underpinned and complemented by the two other components in Cooper’s PALS architecture. In the United States a ground-based interceptor system composed of several sites would combine with the space-based (global) element to provide a layer-ered national missile defense system with a high kill probability against a limited attack. Overseas, “local, regional, or terminal defenses would be required” to complement the global element and to ensure protection against shorter-range missiles.45

Cooper made several specific recommendations relative to Brilliant Pebbles. In addition to endorsing the existing baseline program, which called for BP to operate only during the boost and post-boost phases, Cooper believed that the Pentagon should consider expanding the BP mission to include operations against re-entry vehicles during the mid-course phase of their flight and in the high endoatmospheric portion of the terminal phase of their flight. Such an expansion would substantially increase the effectiveness of missile defenses, provide a hedge against countermeasures, and enhance the value of BP to a PALS system. On the other hand, the mid-course intercept mission would bring with it the nettlesome challenge of mid-course discrimination, the resolution of which might require the deployment of additional sensors such as Brilliant Eyes, an improved infrared sensor system composed of several hundred small, low-altitude satellites.46

In support of his proposal to expand the BP mission to include mid-course interception, Cooper called for the completion of the studies necessary to support an informed decision on his proposal. Top Pentagon leaders, including General Monahan, concurred with the study requirement. As a result, General Monahan chartered the Mid and Terminal Tiers Review (MATTR) in the Spring of 1990.47

However, before this study was completed, a number of major developments occurred in the SDI program. For one thing, General Monahan retired at the end of June and was succeeded in July 1990 by Ambassador Cooper. About a month after Cooper assumed his duties, SDIO conducted the first BP flight test.

In this test, which occurred on 25 August, a payload consisting of a suite of sensors, a processor, and an altitude control system was lofted to an altitude of 124 miles by a rail-guided, three-stage Black Brant X (BBX) launched from Wallops Island, Virginia. Once outside the atmosphere on the way up, the payload package was to separate from the booster. Then, the BP sensor would acquire and track the thrusting Nihka motor of the BBX third stage, demonstrating its ability to accomplish these tasks against an operational missile. Additionally, the star tracker was to take various images that the computer would use to generate commands for the attitude control system, which would control the flight of the instrument package.48
In the event, one of the explosive separation bolts that held the test vehicle's fairing in place fired prematurely, leaving the fairing attached to the rocket by a single bolt. As a result, the fairing was bent and separated improperly, pulling out the telemetry package and causing a loss of test telemetry only eighty-one seconds into the flight. Because of the loss of telemetry, only tangential benefits were realized from the test. Among these was the first successful observation of a rocket by SDIO's ultraviolet plume instrument (UVPI) that was carried aboard SDIO's Low-Power Atmospheric Compensation Experiment (LACE) spacecraft orbiting overhead. The UVPI automatically acquired and tracked the burning of the Nihka motor. At the end of the flight, the components of the experiment splashed down in the Atlantic Ocean as planned.49

While no telemetry was received during the first test, it was apparent that the cause of the failure was outside the BP test package. Therefore, SDIO did not need to modify the BP test package. This knowledge, combined with the fact that the objectives of the second test were similar to those of the first, meant that there was no need to repeat the first experiment, since “the objectives of experiment one could be achieved on a successful flight test two.” The second test would have to be delayed somewhat to allow time to correct the faulty mechanism that had caused the BBX to shed its protective shroud improperly.50

A little over three weeks before the BP test, Iraq had invaded Kuwait, setting in motion a sequence of events that would have important implications for the SDI program. The Iraqi aggression prompted President Bush to mobilize a coalition to drive Saddam Hussein out of Kuwait. Over the next five and a half months, the United States deployed a major force to the Middle East under operation Desert Shield.

As the United States was deploying its forces to the Middle East, Henry Cooper was garnering support for his PALS concept. A key date in this process was 3 January 1991, two weeks before the Gulf War began, when President Bush received his first full-blown briefing on the new SDI program, now known as GPALS for Global Protection Against Limited Strikes. The presentation took place in the Situation Room in the basement of the White House and was attended by key officials in the Bush government.51

Bush decided to adopt the GPALS concept, but his decision was problematical. SDI had never been popular with the Democratically-controlled Congress, which had cut SDI deeply the two previous years and, in FY 1991, placed “sharp restrictions” on space-based elements, which threatened to violate the ABM Treaty. Yet, if GPALS were to have a truly global capability, it would have to include the space-based Brilliant Pebbles. In the words of a “Pentagon official”:

“To have global protection, you’ve got to have space-based weapons. . . . They’re always in position. If Saddam had a 4,500-kilometer weapon, he couldn’t reach the U.S., but he could hit most of Western Europe. Where would you put your ground-based interceptors? You’d have to have them everywhere. The beauty of space-based interceptors is they protect many targets at once. The equivalent protection cannot be done from the ground. Besides, you’re better off environmentally and politically have the staff in space. In space, nobody sees the things.”52

Circumstances would soon change, offering President Bush a window of opportunity for advancing the new SDI architecture.

Tensions in the Middle East had been growing since the beginning of the massive U.S. buildup. The Iraqis were known to possess a considerable number of Scud variant missiles and had used these missiles lavishly in their earlier war with Iran. As a result, there was considerable concern that forces of the American-led coalition would come under missile attack during the Desert Shield build-up. The tension of Desert Shield gave way to the violence of Desert Storm in the pre-dawn darkness of 17 January 1991 when the coalition’s air forces were unleashed on Iraqi targets. The six weeks of warfare that followed produced a major military milestone: the first operational engagement between defensive and offensive missiles. The clash between Patriots and Scuds prompt-

52 Quoted in Fred Barnes, “White House Watch,” p. 11. Barnes presented several reasons why GPALS was unlikely to be accepted in early January 1991. Among these were the departure of President Reagan, SDI’s leading advocate; the refusal of Congress to grant Reagan’s request that Abrahamson be promoted to four-star general and Abrahamson’s being “forced to retire;” Monahan’s leadership of the program—he managed the program without championing it; and the distraction of Cheney by his advocacy of the B-2 bomber and of Bush with Soviet relations and German re-unification. (Barnes, p. 10)
ed a reporter for the *Los Angeles Times* to declare that the “age of Star Wars” had begun.53

As the war progressed, Americans were confronted nightly with television images of civilians and soldiers running for cover as *Scuds* streaked toward their targets and *Patriot* missiles rose from their launchers to meet them. Two leading senators, Sam Nunn (D-GA) and John Warner (R-VA), actually experienced a *Scud* raid while visiting Israel. It was not surprising, then, that the combined houses of Congress applauded President Bush on 29 January 1991 when he announced in his State of the Union Address that the focus of SDI was shifting to the GPALS architecture. “I have,” the President said, “directed that the SDI program be refocused on providing protection from limited ballistic missile strikes—whatever their source. Let us pursue an SDI program that can deal with any future threat to the United States, to our forces overseas, and to our friends and allies.”54

A few weeks after Bush’s State of the Union Address, the MATTR team completed the study that Monahan had initiated in the Spring of 1990. This study addressed “the ability of the Phase I Strategic Defense System to engage reentry vehicles in their midcourse and terminal phases of flight, with a view toward simplification, cost reduction, and increased effectiveness.” It evaluated three versions of the BP concept: the baseline system that operated only during the boost and post-boost phases of an ICBM’s flight, Brilliant Pebbles-Midcourse, and Brilliant Pebbles-Terminal. Based on this evaluation, the study recommended including “Brilliant Pebbles (augmented with midcourse intercept capabilities)” in the SDI architecture, which should also include Brilliant Eyes, the Exo/Endo Interceptor (E/I), a terminal radar to support E/I, and the Command Center Element to tie the elements together. The study also recommended including GSTS and GBI in the architecture to increase its robustness, but noted that these had a lower priority than the other elements. This architecture, the report concluded, provided for interception in the boost/post-boost, midcourse, and terminal phases of a missile’s flight and would force the offensive force planner into complex decisions for offloading RVs in favor of penetration aids. The presence of a midcourse and terminal phase of defense will force the Soviets into a situation where either there will be fewer midcourse decoys than before, or one in which there will be no terminal decoys if the Soviets elect to concentrate on the midcourse phase. In any event, the two layers of defense should result in a more robust ground-based defense.55

As fully articulated in SDIO’s May 1991 report to Congress, the new GPALS architecture would include four major components: a ground-based national missile defense system to protect the United States, a ground- and sea-based system to defend deployed U.S. forces and the forces and peoples of American allies, a space-based system (Brilliant Pebbles) that could protect any point on the globe against a limited missile attack, and a battle management/command and control system that integrated the other three components into a coherent, synergistic system. Of the three defensive components, Brilliant Pebbles was the most important, since it “would provide global detection of an attack” and was to be capable of destroying both strategic and theater ballistic missiles, provided the latter traveled a distance that exceeded six hundred kilometers. A later fact sheet would put the case for BP as follows:

*The role of Brilliant Pebbles is vital to the GPALS mission. BP will provide global protection against ballistic missiles. While on orbit, a BP will be able to detect a hostile missile launch, decide whether or not to engage the target, and destroy the target by colliding with it. Once given intercept authority from man-in-the-loop, BP will do all of this autonomously and will communicate with other BPs to coordinate which Pebble will engage which target. The Brilliant Pebbles program represents more than an alternate design for a space-based interceptor. First, BP is a different architectural concept for the space-based seg-

53 For information on the start of Desert Storm, see Thomas A. Keaney and Eliot A. Cohen, *Gulf War Air Power Survey: Summary Report* (Washington, D.C.: U.S. Government Printing Office, 1993), pp. 11-12. For the quotation on the beginning of the Star Wars era, see Melissa Healy, “High-Tech Missile Hits Bull’s-Eye,” *Los Angeles Times*, 22 January 1991, p. 1. Healy made this comment in response to what was considered at the time to be the first *Scud*-Patriot battle of the war on 18 January. The actual effectiveness of the Patriot was a much debated topic after the war, and there was some question as to whether the Patriots fired on 18 January were really reacting to a *Scud* attack or merely a false radar indication. Nevertheless, the Patriot seems to have played a crucial strategic role in keeping the fragile Gulf War coalition viable. This point was made by William Safire, in his Op-Ed piece: “The Great *Scud*-Patriot Mystery,” *New York Times*, 7 March 1991, p. 25, reprinted in Office of Assistant Secretary of Defense for Public Affairs, *Current News: Early Bird*, p. 3. Safire noted that in the case of the *Patriot* missile: “Psychology triumphed over technology. Why did the *Scud*, a terror weapon that delivered many of its warheads, fail to terrorize? The ironic reason: The *Patriot*, even if investigators find it failed in its military mission to kill warheads, averted Saudi panic and Israeli need for reprisal by providing a false sense of security.”

This was the state of the GPALS architecture as members of Congress began their deliberations on the authorization and appropriation bills for fiscal year 1992. As they did, images of Gulf War missile attacks were still fresh in their minds. Their efforts produced the Missile Defense Act (MDA) of 1991 that became law in November 1991.

Congressional Strictures and the Demise of Brilliant Pebbles

Although widely acclaimed by missile defense advocates for setting specific deployment goals for both theater and national missile defense, the MDA of 1991 was in fact a compromise document that also included strong language requiring missile defense deployments to be compliant with the ABM Treaty. This agreement allowed the United States to deploy a single ABM system at Grand Forks, North Dakota, and restricted the number of interceptors at this one site to one hundred. But even here, the MDA introduces a degree of ambivalence for it opens with a statement in Section 232 that implies an expectation that the ABM Treaty would be altered to permit deployment of a fully effective missile defense system that would include multiple sites. Thus, we read:

> It is the goal of the United States to . . . deploy an anti-ballistic missile defense system, including one or an adequate additional number of anti-ballistic missile sites and space-based sensors, that is capable of providing a highly effective defense of the United States against limited attacks of ballistic missiles.

However, in the following section, which specifies implementation measures, the MDA qualifies this goal by charging the secretary of defense with deploying

> by the earliest date allowed by the availability of appropriate technology or by fiscal year 1996 a cost effective, operationally-effective, and ABM Treaty-compliant [italics added] anti-ballistic missile system at a single site as the initial step toward deployment of an anti-ballistic missile system . . . designed to protect the United States against limited ballistic missile threats, including accidental or unauthorized launches or Third World Attacks.

Further ambivalence is to be found in the law’s specific instructions regarding Brilliant Pebbles. On the one hand, the act seemed to recognize that the BP interceptor was critical to providing a highly effective” missile defenses, since Section 234 (a) called for “robust funding for research and development for promising follow-on anti-ballistic missile technologies, including Brilliant Pebbles.” Yet, it expressly forbade the inclusion of BP in the initial plans for a limited national missile defense. In the words of the MDA: “EXCLUSION FROM INITIAL PLAN: Deployment of Brilliant Pebbles is not included in the initial plan for the limited defense system architecture described in section 232 (a).” Moreover, when Congress needed a hostage to ensure the Pentagon would submit a required report on “conceptual and burden sharing issues associated with the option of deploying space-based interceptors (including Brilliant Pebbles),” the hostage taken was Brilliant Pebbles. No more than fifty percent of MDA funding for BP could be spent until forty-five days after DoD submitted the report to Congress.

Some degree of clarity comes in the MDA’s specifications for the initial national missile defense architecture, for these were clearly drawn from the ABM Treaty. The architecture was to include only one hundred ground-based interceptors in accordance with treaty provisions. It was to have only “fixed, ground-based, anti-ballistic missile battle management radars.” Finally, the architecture was to make optimum “utilization of space-based sensors, including sensors capable of cueing ground-based anti-ballistic missile interceptors and providing initial targeting vectors, and other sensor systems that are also not prohibited by the ABM Treaty [italics added], such as a ground-based sub-orbital surveillance and tracking system.”

Faced with this ambivalence, a fainthearted SDI program manager might have severely restricted the Brilliant Pebbles program. Henry Cooper was anything but fainthearted. And under his tutelage, SDIO continued to push BP because of its primal role in GPALS, thereby setting himself and his agency on a collision course with congressional Democrats, many of whom were commit-

58 MDA of 1991, p. 35.

ted to arms control and staunch opponents of SDI. The critical collision came on 9 April 1992 when Ambassador Cooper testified before the Subcommittee on Strategic Forces of the Senate Armed Services Committee.

By this time, Sam Nunn, chairman of the Armed Services Committee, was suspicious of the Brilliant Pebbles program. This suspicion manifested itself in a request from Nunn to the General Accounting Office for a review of the analysis that SDIO had done regarding the possible effectiveness of Brilliant Pebbles.

The GAO started its report by describing the BP architecture that was to consist of several staggered rings of interceptors orbiting at an altitude of about 400 kilometers. The report then noted that SDIO’s estimates of the capabilities of the Brilliant Pebbles concept were based on computer simulations of forty different attack scenarios and that such simulations offered the only method of analysis available “at this early stage” in the program. The results of this analytical process were to be used to refine a BP design that would then be put through a five-year testing program to secure data that would then replace the assumptions and theories of the simulations.

GAO granted that computer simulations were useful tools and that such simulations were the only means of investigating matters such as the performance of a future system. Still, developers must be careful to avoid the pitfall of mistaking data from simulations for information that was necessarily representative of reality.

Included as an appendix to the GAO report was a letter from Henry Cooper in which he generally concurred with the GAO’s findings. However, at the same time, Cooper noted that SDIO’s use of simulations was within the bounds of sound engineering practice. In his words:

Brilliant Pebbles simulation activities are consistent with a program in the demonstration and validation phase. The “maturity” of Brilliant Pebbles simulations will change and be enhanced with improvements in the design of primary system hardware prototypes. It is crucial that the simulation efforts provide sufficiency to allow the program to proceed to the next milestone.

The report indicates that simulations may rely on data that are incomplete and assumptions that may be inaccurate. That does not limit the simulation usefulness. The Strategic Defense Initiative Organization has relied upon an arduous engineering assessment tempered by real-world experience to arrive at a working hypothesis. Assumptions are based upon a combination of the understanding of the system operation, operating characteristics, and engineering analysis. As more data becomes available, assumptions are modified as necessary. Additionally, the Strategic Defense Initiative Organization has relied upon the best available threat information, as found in the most current intelligence scenarios.

It also should be noted that some of the assumptions reflect validated operational requirements. The acquisition process requires an evaluation of system capability to meet those requirements. The Strategic Defense Initiative Organization does not randomly choose parameters. Operational requirements are matched, to the greatest extend possible, to system performance assumptions. Furthermore, it should be recognized that system effectiveness also is a function of selected tactics and that the user, U.S. Space Command, is deeply involved in the development of operational employment, strategy, and tactics.

Nunn received this report within two weeks of the 9 April hearings, and it may have contributed to the hostility toward Brilliant Pebbles that he exhibited during the hearings. Since his presence was required on the floor of the Senate where an important budget resolution was being considered, Nunn missed the opening of the hearings. When he entered the hearing room about 4:30 p.m., Nunn effectively took control of the proceed-

60 As a space-based weapon, BP was sure to run afoul of ABM Treaty supporters, since that treaty forbade mobile ABM systems, whether ground-, sea-, air-, or space-based. Additionally, there was the issue of weapons in space. Regarding this latter point, at the end of May 1993, General Charles Horner, Commander-in-Chief, U.S. Space Command, stated that “you have a problem with philosophical people who say they are against weapons in space. They are missing the boat, because the weapon in space is not the space-based interceptor. It’s the warhead on the intercontinental ballistic missile.” (Ben Iannotta, Interview with General Horner, Space News, 31 May–6 June 1993, p. 22.)

62 GAO/NSIAD-92-91, pp. 3–4. Regarding the specific assumptions in the SDIO simulations, GAO included “assumptions about many key operational characteristics” such as the ability of the constellation to maintain continuous surveillance of the earth’s surface, the length of time required for the BP interceptors to receive the enabling command that would allow them to attack approaching missiles, and the handling of target assignment to individual BP interceptors.

63 GAO/NSIAD-92-91, p. 11.

65 GAO Report NAISD-92–91 was dispatched to Nunn by Nancy R. Kingsbury to Sam Nunn, Letter, 27 March 1992, which is included in the front of the report itself.
ings, directing a staff aide to put up a series of large post-er-board briefing charts as he proceeded to take Cooper step-by-step through the points he wanted to make.66

First, Nunn noted that the Missile Defense Act established for SDI the goal of fielding a treaty-compliant ABM system by 1996 while allowing for a delay if this goal proved technically unfeasible. Nunn indicated that he was willing to be flexible with regard to the date, but was upset by an assertion by SDIO to the effect that Congress had failed to provide the funding needed to meet the 1996 deadline. Nunn then accused SDIO of creating the shortfalls through its own funding allocations. Included in the SDIO allocations that Nunn challenged was excessive spending on space-based elements, including Brilliant Pebbles, that could not be ready in time for the specified deployment date of 1996.67

After Cooper defended his programmatic and funding decisions, Nunn accused him of continuing to push the GPALS architecture in the face of the MDAs requirement for the deployment of a limited national missile defense system at Grand Forks. Instead of pushing systems like the Ground-based Surveillance and Tracking System that would add to the effectiveness of the Grand Forks deployment, Cooper had chosen to allocate $390 million for Brilliant Pebbles, even though Congress specifically excluded it from the Limited Defense System [LDS] architecture. Nunn ended this line of argument by essentially charging that Cooper had purposefully undermined the LDS deployment.

So, it is my assertion, Mr. Ambassador—which you can rebut—that what you’ve done by a combination of funding, and the reduction in GSTS, is, you made sure that Grand Forks would not be effective if we did it during this decade.

Therefore, you made it almost impossible for it to happen during this decade. I don’t know the motive for that, but that’s what it looks like to me. 68

Cooper defended his program decisions by pointing out the problems associated with the GSTS program, which would add about $1 billion to the program if pushed at the level advocated by Nunn. He also stated a second time that in choosing the funding level for space-based and follow-on research and development that he had taken as his guide the funding levels voted by Congress when it passed the MDA: 11% of program funding for space-based interceptors and 14% for other follow-on technologies. Nunn then responded that regardless of Cooper’s points, the prospect of a 1996 deployment date for the limited defense system was not supported by the current SDIO program. To this, Cooper replied that the 1996 date had never really been possible.69

All of this notwithstanding, Nunn continued to hammer home his basic point: SDIO was planning to spend $2.6 billion on Brilliant Pebbles, a development that could not possibly contribute to an LDS deployment for 1996, the priority established by the MDA. “It’s clear Mr. Ambassador, just by the numbers, it’s absolutely clear, that your priority is not—maybe it’s the right priority but it’s not the priority of Congress—your priority is not to meet an early deployment date on an ABM [Treaty]-compliant system.” The fact that SDIO was in the process of spending $2.6 billion on the BP program made it clear that Cooper’s priority was “still Brilliant Pebbles.” Therefore, Nunn continued, “it’s very clear” that Congress will have to make “a more definitive statement” of its goals for the SDI program in this year’s authorization law.70

The contention between Nunn and Cooper in the April exchange was caused by the ambivalence of the MDA of 1991, a compromise document cobbled together to mollify the differences between the proponents of missile defense and the advocates of arms control. The former favored an all out effort to field a missile defense with the most capable technology in the shortest possible time. The latter were determined to protect the ABM Treaty. The goal of fielding a system by 1996 played to advocates of missile; requiring the limited national defense system to be treaty-compliant satisfied arms control supporters.

In his exchange with Nunn, SDI program manager Cooper was trying to explain how he had taken congressional instructions and chosen from among the available technological options a mix of systems that would provide a limited defense capability at the earliest time. The program Cooper designed also provided for the incorporation over time

66 Hearings of the Strategic Forces Subcommittee of the Senate Armed Services Committee, Subject: “FY 93 SDIO Budget Request,” 9 April 1992, transcript prepared by contractor for SDIO, p. 28. The SDIO Historian, Dr. Donald R. Baucom, attended these hearings. The account of the hearings presented here reflects the influence of his recollections as captured in notes taken during the hearings.

67 Transcript of 9 April 1992 Hearings, pp. 28-31. There was an exchange at this point between Cooper and Nunn as to what treaty-compliant meant. From his perspective, Cooper said, treaty-compliant meant that the LDS could only be deployed at Grand Forks. Only if the ABM Treaty were amended could the system be deployed at other sites. Nunn said that legally, this provision meant the conditions specified by the ABM Treaty at the time the MDA of 1991 was passed. Cooper responded that what he meant was that if the ABM Treaty were amended to allow deployment at other sites, it might be better to deploy at three sites, one of which might not be Grand Forks. If that turned out to be the case, deploying at Grand Forks would waste about $2 billion. Under these circumstances, DoD would come back to Congress and ask for permission to change the deployment plans. Nunn then dropped the issue and moved on to his next point. (pp. 29-30)

of new and improved components that would enhance overall system performance. Not having wrestled with the performance trade decisions that Cooper had been forced to take, Nunn could not fully appreciate the difficulties posed by the 1996 deployment deadline. Part of Cooper’s concern was, no doubt, to maintain the integrity of the BMC system, the embodiment of the system architecture, which had to be designed from the outset to integrate not only near term systems, but follow-on systems as well. Without this kind of architectural planning, any system fielded was a technological cul-de-sac that would quickly lose its effectiveness in the face of offensive threats that would surely continue to evolve and improve.

Realizing the seriousness of the situation, Cooper moved immediately to cut $2 billion from the funding profile of the overall space-based interceptor program. These cuts included reductions that forced a slippage of thirty months in the Brilliant Pebbles program.71

At the same time, Nunn was moving ahead with plans to codify the views he had expressed in the 9 April 1992 Senate hearings. In doing so, he would be sounding the death knell for Brilliant Pebbles and the entire GPALS concept, for GPALS was radically dependent for its effectiveness upon Brilliant Pebbles, which provided an overarching, space-based defensive layer that enhanced both theater and national defenses. It was the synergism between space-based and surface-based missile defense components that justified the integration of all three components into a coherent system through the design of the GPALS BMC system, which embodied the very essence of this critical synergism.

The themes that Nunn had expressed in his 9 April exchange with Cooper surfaced again in August during the Senate debate of the FY 1993 authorization act and suggest that Senate Democrats were intent on fixing what they saw as flaws in the Missile Defense Act of 1991. On 7 August 1992, Senator Nunn again expressed his reservations about the direction of the SDI program. SDIO had “continued to spend excessive amounts” on Brilliant Pebbles, said Nunn, despite Congress’ clear direction last year excluding it from the architecture for the multiple-site limited defense system. Since that eventual multi-site system will not likely be completed until the second half of the next decade—in other words, sometime after 2005—there is no need to develop Brilliant Pebbles for possible deployment any sooner. This action [being contemplated by the Senate] puts the Brilliant Pebbles funding profile on a downward slope, a course the committee believes is fully justified given the uncertainty over how and where this option might fit into the picture.72

During the same debate, Senator Carl Levin (D-MI) asserted that the threat to the U.S. form a ballistic missile attack was not as serious as previously believed and faulted Congress for providing too much money for Brilliant Pebbles. In his words:

The Committee discovered this year that its intent had been disregarded. More money was being put into research of Brilliant Pebbles and taken away from limited defense systems even though early deployment of Brilliant Pebbles had been specifically excluded. After that experience, we should have learned that if we don’t want Brilliant Pebbles to be a priority for deployment, we should stop allocating such high sums for research on Brilliant Pebbles.

Space-based sensors are something we should be continuing research on but space-based interceptors like Brilliant Pebbles should be explored for a follow-up system, not funded as the crash course program.73

In response to the comments of Nunn and Levin and other signals coming from Congress relative to the SDI program, Secretary of Defense Richard Cheney warned Nunn that congressional restrictions on SDI might prompt President Bush’s top advisors to recommend a veto of the authorization bill. Cheney said that restrictions in both the House and Senate versions of the FY1993 Defense Authorization Bill would undermine the top national priority accorded missile defense in the Missile Defense Act of 1991. Indeed, the funding levels in these bills would likely postpone until the next century our effort to protect the American people from a ballistic missile attack, severely curtail Brilliant Pebbles—contrary to the “robust funding” called for in the Missile Defense Act, and jeopardize our efforts to join Russia and our Allies in realizing a joint global protection system as agreed by President Bush and President Yeltsin. Unless the final bill sustains our ability to pursue global missile defense consistent with the Missile Defense Act, the President’s senior advisors would recommend a veto.74

Cheney’s defense of Brilliant Pebbles was not helped by the failure of its third flight test on 22 October 1992. This was to be a non-intercept flight test during which a booster would carry into space both a target and a kill vehicle built by Lawrence Livermore National Laboratory. Once in space the two

Of new and improved components that would enhance overall system performance. Not having wrestled with the performance trade decisions that Cooper had been forced to take, Nunn could not fully appreciate the difficulties posed by the 1996 deployment deadline. Part of Cooper’s concern was, no doubt, to maintain the integrity of the BMC system, the embodiment of the system architecture, which had to be designed from the outset to integrate not only near term systems, but follow-on systems as well. Without this kind of architectural planning, any system fielded was a technological cul-de-sac that would quickly lose its effectiveness in the face of offensive threats that would surely continue to evolve and improve.

Realizing the seriousness of the situation, Cooper moved immediately to cut $2 billion from the funding profile of the overall space-based interceptor program. These cuts included reductions that forced a slippage of thirty months in the Brilliant Pebbles program.71

At the same time, Nunn was moving ahead with plans to codify the views he had expressed in the 9 April 1992 Senate hearings. In doing so, he would be sounding the death knell for Brilliant Pebbles and the entire GPALS concept, for GPALS was radically dependent for its effectiveness upon Brilliant Pebbles, which provided an overarching, space-based defensive layer that enhanced both theater and national defenses. It was the synergism between space-based and surface-based missile defense components that justified the integration of all three components into a coherent system through the design of the GPALS BMC system, which embodied the very essence of this critical synergism.

The themes that Nunn had expressed in his 9 April exchange with Cooper surfaced again in August during the Senate debate of the FY 1993 authorization act and suggest that Senate Democrats were intent on fixing what they saw as flaws in the Missile Defense Act of 1991. On 7 August 1992, Senator Nunn again expressed his reservations about the direction of the SDI program. SDIO had “continued to spend excessive amounts” on Brilliant Pebbles, said Nunn, despite Congress’ clear direction last year excluding it from the architecture for the multiple-site limited defense system. Since that eventual multi-site system will not likely be completed until the second half of the next decade—in other words, sometime after 2005—there is no need to develop Brilliant Pebbles for possible deployment any sooner. This action [being contemplated by the Senate] puts the Brilliant Pebbles funding profile on a downward slope, a course the committee believes is fully justified given the uncertainty over how and where this option might fit into the picture.72

During the same debate, Senator Carl Levin (D-MI) asserted that the threat to the U.S. form a ballistic missile attack was not as serious as previously believed and faulted Congress for providing too much money for Brilliant Pebbles. In his words:

The Committee discovered this year that its intent had been disregarded. More money was being put into research of Brilliant Pebbles and taken away from limited defense systems even though early deployment of Brilliant Pebbles had been specifically excluded. After that experience, we should have learned that if we don’t want Brilliant Pebbles to be a priority for deployment, we should stop allocating such high sums for research on Brilliant Pebbles.

Space-based sensors are something we should be continuing research on but space-based interceptors like Brilliant Pebbles should be explored for a follow-up system, not funded as the crash course program.73

In response to the comments of Nunn and Levin and other signals coming from Congress relative to the SDI program, Secretary of Defense Richard Cheney warned Nunn that congressional restrictions on SDI might prompt President Bush’s top advisors to recommend a veto of the authorization bill. Cheney said that restrictions in both the House and Senate versions of the FY1993 Defense Authorization Bill would undermine the top national priority accorded missile defense in the Missile Defense Act of 1991. Indeed, the funding levels in these bills would likely postpone until the next century our effort to protect the American people from a ballistic missile attack, severely curtail Brilliant Pebbles—contrary to the “robust funding” called for in the Missile Defense Act, and jeopardize our efforts to join Russia and our Allies in realizing a joint global protection system as agreed by President Bush and President Yeltsin. Unless the final bill sustains our ability to pursue global missile defense consistent with the Missile Defense Act, the President’s senior advisors would recommend a veto.74

Cheney’s defense of Brilliant Pebbles was not helped by the failure of its third flight test on 22 October 1992. This was to be a non-intercept flight test during which a booster would carry into space both a target and a kill vehicle built by Lawrence Livermore National Laboratory. Once in space the two

Missile Defense, the Space Relationship, and the Twenty-First Century

appendix D

test vehicles were to separate, and the four-foot long target was to ignite its engine. After watching the engine ignite, the thirty kilogram BP vehicle would then accelerate to a speed of two kilometers per second and close to within ten meters of the target.75

Seventeen seconds after liftoff from Wallops Island, personnel on the ground noticed pieces falling off the booster. Fifty-five seconds into the flight, when it became obvious that the booster had experienced a major failure, range safety destroyed the rocket. Later analysis pointed toward a failed nozzle in the first stage of the ARIES I booster as the cause of the booster’s failure.76

In the meantime, the views expressed by Nunn and Levin in their August floor speeches were being incorporated into the National Defense Authorization Act for FY 1993. Here, Congress modified the 1991 Missile Defense Act by making it clear that preserving the ABM Treaty was of paramount concern to Congress. In the 1991 version of the law, Section 232, paragraph (a) (1), stated:

(a) **Missile Defense Goal.--It is a goal of the United States to--**

(1) deploy an anti-ballistic missile system, including one or an adequate number of anti-ballistic missile sites and space-based sensors, that is capable of providing a highly effective defense of the United States against limited attacks of ballistic missiles.77

The 1992 Authorization Act replaced this paragraph with the following:

(a) **Missile Defense Goal.--It is a goal of the United States to--**

(1) comply with the ABM Treaty, including any protocol or amendment thereto, and not develop, test, or deploy

76 Strategic Defense Initiative Organization, Office of External Affairs, Memorandum for Correspondents, No. 298-M, 23 October 1992; “Brilliant Pebbles Flight Test Fails,” *Aerospace Daily*, 26 October 1992, pp. 133-134; “SDIO Experiment Launch Vehicle Problems,” Internal SDIO Document, [Approximate Date 1 November 1992]. The results of the Brilliant Pebbles test program are summarized in “Brilliant Pebbles Restructured to Demo Program,” *SDI Monitor*, 15 January 1993, p. 21. According to this article, the final two BP tests using LLNL hardware had been canceled by 15 January 1993. Apparently, these cancellations were part of what Colonel Rhip Worrell, BP program manager, meant when he said that LLNL’s role in the program had been “throttled back significantly” when BP was latter transferred to the Air Force. Also involved in the cutback to the BP program was a slippage of twelve-to-eighteen months in the contractor test program and the possibility that “one or two of the planned intercept tests might be canceled.”

requirement, combined with Nunn’s view that Brilliant Pebbles would not be needed until after 2005, constitute another major step in the decline of BP, since these two points could form the basis of a rationale for transferring the program to another agency.83

By the beginning of 1993, Brilliant Pebbles had begun its death rattle. First, SDIO announced in early November 1992 that it would be forced to remove the funds-strapped BP program from the acquisition process. Then, SDIO transferred the program to the Air Force with an effective date of 18 December 1992 and let new contracts in January 1993 to convert the Brilliant Pebbles program into an “advanced technology demonstration.”83

Brilliant Pebbles continued its decline under the new administration of President William J. Clinton. On 2 February 1993, Secretary of Defense Les Aspin issued his budget guidance for the SDI program; it reduced Brilliant Pebbles to a technology base program. Aspin’s guidance was codified in Program Budget Decision (PBD) 756 of 3 March 1993, which detailed the changes that the Clinton administration was imposing on the Brilliant Pebbles program. The Secretary’s final decision for FY 1994 reduced BP’s $100 million total obligation authority to $75 million and moved BP into the follow-on technology category.84 With this shift in status and funding, the Brilliant Pebbles program was renamed the Advanced Interceptor Technology (AIT) Program in March 1993.85

The AIT program limped along until 1 December 1993 when Dr. James D. Carlson, acting deputy director for the Ballistic Missile Defense Organization (BMDO),86 issued a stop work order ending the program. Carlson explained the reasons for the decision as follows:

Reductions in the Ballistic Missile Defense Organization (BMDO) Research and Support Activities program mandate radically reduced funding in FY1994 for the Advanced Intercept [sic] Technology program. Furthermore, our implementation of Bottom Up Review decisions and fiscal constraints for the Ballistic Missile Defense FY1995-99 program can provide for only a single exoatmospheric kinetic kill vehicle integrated technology program and cannot support a separate space-based interceptor effort.

Therefore, you are directed to immediately stop all work on the Advanced Intercept [sic] Technology program funded under PMA F1214. All further technical effort must immediately cease. The Air Force must absolutely minimize termination costs in bringing these efforts to a close.

Carlson found it regrettable that the program had to be terminated “given past investments and program progress.” However, under the circumstances, termination was unavoidable.87

Epilogue: Clementine and the Ghost of Brilliant Pebbles

But Clementine’s very triumph worked against it in ways that shed light on the politics underlying the space program. The spacecraft’s supporters in the Pentagon believe that the Clinton administration dislikes Clementine because it represents the ghost of Star Wars, which was...

82 Henry F. Cooper, “A Summary of SDI Programs and Plans for Theater and National Ballistic Missile Defense,” 4 January 1993, p. 12, noted that the Space-Based Interceptor program, which he noted was Brilliant Pebbles, “could, within 15 years, provide significant added performance capabilities.” Cooper also stated in a footnote on this page that the “pace at which systems concepts can be fully developed and fielded” in the case of BP “is set by the available funding—not the state of technology. Present schedules could be considerably shortened, perhaps up to half, if technology limited development programs were funded.”

86 On 13 May 1993, Secretary of Defense Les Aspin announced that DoD was changing the name of the SDI Organization to Ballistic Missile Defense Organization.

87 James D. Carlson, Memorandum for Air Force Program Executive Officer for Space, Subject: “Advanced Intercept Technology (AIT) Program Stop Work Order,” 1 December 1993. Project 1214 is listed in Ballistic Missile Defense Organization, 1994 Report to the Congress on Ballistic Missile Defense, July 1994, p. A7, as the “Advanced Intercept Technology (AIT) Program.” The entry under this project number states: “This effort encompassed demonstrating key space interceptor and satellite technologies, based on system requirements and designs, and performing risk reduction. The Brilliant Pebbles (BP) program developed the primary technology in the AIT program. This project is to be discontinued after FY 1994.” The funding profile for this project included only $15,000 in FY 1994, presumably for contract termination costs.
By the end of 1991, the budget cuts that were strangling the Brilliant Pebbles program had aroused concern that the capabilities of space-based technologies developed in the SDI program would never be demonstrated. As a result, in January 1992, Lieutenant Colonel Pedro L. Rustan and a number of his SDIO colleagues gathered in the office of SDIO Director Henry Cooper and formulated the concept for a space probe mission based on the technologies being developed for Brilliant Pebbles. This was the genesis of Clementine.

President Reagan’s pet program, and therefore prefers a program to rival it.

In early 1992, Lieutenant Colonel Pedro L. Rustan and a number of his SDIO colleagues gathered in the office of SDIO Director Henry Cooper and formulated the concept for a space probe mission based on the technologies being developed for Brilliant Pebbles. This was the genesis of Clementine.

Launched aboard a Titan II rocket on 25 January 1994, Clementine was spectacularly successful in the lunar portion of its mission. In seventy-three days, it completed about 350 lunar orbits and took almost 1.8 million multi-spectral images of the moon. These images provided the “first high fidelity photometric survey of an extraterrestrial body.” Furthermore, Clementine’s data indicated the existence of water at the lunar poles. Unfortunately, while Clementine joint undertaking sponsored by the Ballistic Missile Defense Organization and NASA.

The Clementine probe would first be launched into a low earth orbit where it would remain for a week while its systems were checked out and stabilized. Then, its interstage motor would boost it into a lunar orbit where it would remain for about two months, taking “pictures” of the Moon in various bands of the electromagnetic spectrum. To assure full coverage of the moon’s surface, after a month in one orbit, Clementine would shift to a second one. After the second month in lunar orbit, the probe would maneuver into a two-revolution phasing loop with the Earth and obtain a gravity-assist lunar swingby. This would be followed by a three month flight that would culminate in a rendezvous with the near-earth asteroid Geographos. Closing at 10.8 kilometers per second, Clementine and the asteroid would pass within about a hundred kilometers of each other. Then, the probe would continue out into deep space.

Launched aboard a Titan II rocket on 25 January 1994, Clementine was spectacularly successful in the lunar portion of its mission. In seventy-three days, it completed about 350 lunar orbits and took almost 1.8 million multi-spectral images of the moon. These images provided the “first high fidelity photometric survey of an extraterrestrial body.” Furthermore, Clementine’s data indicated the existence of water at the lunar poles. Unfortunately, while Clementine joint undertaking sponsored by the Ballistic Missile Defense Organization and NASA.

The Clementine probe would first be launched into a low earth orbit where it would remain for a week while its systems were checked out and stabilized. Then, its interstage motor would boost it into a lunar orbit where it would remain for about two months, taking “pictures” of the Moon in various bands of the electromagnetic spectrum. To assure full coverage of the moon’s surface, after a month in one orbit, Clementine would shift to a second one. After the second month in lunar orbit, the probe would maneuver into a two-revolution phasing loop with the Earth and obtain a gravity-assist lunar swingby. This would be followed by a three month flight that would culminate in a rendezvous with the near-earth asteroid Geographos. Closing at 10.8 kilometers per second, Clementine and the asteroid would pass within about a hundred kilometers of each other. Then, the probe would continue out into deep space.

Launched aboard a Titan II rocket on 25 January 1994, Clementine was spectacularly successful in the lunar portion of its mission. In seventy-three days, it completed about 350 lunar orbits and took almost 1.8 million multi-spectral images of the moon. These images provided the “first high fidelity photometric survey of an extraterrestrial body.” Furthermore, Clementine’s data indicated the existence of water at the lunar poles. Unfortunately, while Clementine joint undertaking sponsored by the Ballistic Missile Defense Organization and NASA.

The Clementine probe would first be launched into a low earth orbit where it would remain for a week while its systems were checked out and stabilized. Then, its interstage motor would boost it into a lunar orbit where it would remain for about two months, taking “pictures” of the Moon in various bands of the electromagnetic spectrum. To assure full coverage of the moon’s surface, after a month in one orbit, Clementine would shift to a second one. After the second month in lunar orbit, the probe would maneuver into a two-revolution phasing loop with the Earth and obtain a gravity-assist lunar swingby. This would be followed by a three month flight that would culminate in a rendezvous with the near-earth asteroid Geographos. Closing at 10.8 kilometers per second, Clementine and the asteroid would pass within about a hundred kilometers of each other. Then, the probe would continue out into deep space.

Launched aboard a Titan II rocket on 25 January 1994, Clementine was spectacularly successful in the lunar portion of its mission. In seventy-three days, it completed about 350 lunar orbits and took almost 1.8 million multi-spectral images of the moon. These images provided the “first high fidelity photometric survey of an extraterrestrial body.” Furthermore, Clementine’s data indicated the existence of water at the lunar poles. Unfortunately, while Clementine joint undertaking sponsored by the Ballistic Missile Defense Organization and NASA.

The Clementine probe would first be launched into a low earth orbit where it would remain for a week while its systems were checked out and stabilized. Then, its interstage motor would boost it into a lunar orbit where it would remain for about two months, taking “pictures” of the Moon in various bands of the electromagnetic spectrum. To assure full coverage of the moon’s surface, after a month in one orbit, Clementine would shift to a second one. After the second month in lunar orbit, the probe would maneuver into a two-revolution phasing loop with the Earth and obtain a gravity-assist lunar swingby. This would be followed by a three month flight that would culminate in a rendezvous with the near-earth asteroid Geographos. Closing at 10.8 kilometers per second, Clementine and the asteroid would pass within about a hundred kilometers of each other. Then, the probe would continue out into deep space.

Launched aboard a Titan II rocket on 25 January 1994, Clementine was spectacularly successful in the lunar portion of its mission. In seventy-three days, it completed about 350 lunar orbits and took almost 1.8 million multi-spectral images of the moon. These images provided the “first high fidelity photometric survey of an extraterrestrial body.” Furthermore, Clementine’s data indicated the existence of water at the lunar poles. Unfortunately, while Clementine joint undertaking sponsored by the Ballistic Missile Defense Organization and NASA.

The Clementine probe would first be launched into a low earth orbit where it would remain for a week while its systems were checked out and stabilized. Then, its interstage motor would boost it into a lunar orbit where it would remain for about two months, taking “pictures” of the Moon in various bands of the electromagnetic spectrum. To assure full coverage of the moon’s surface, after a month in one orbit, Clementine would shift to a second one. After the second month in lunar orbit, the probe would maneuver into a two-revolution phasing loop with the Earth and obtain a gravity-assist lunar swingby. This would be followed by a three month flight that would culminate in a rendezvous with the near-earth asteroid Geographos. Closing at 10.8 kilometers per second, Clementine and the asteroid would pass within about a hundred kilometers of each other. Then, the probe would continue out into deep space.
was performing the maneuver that would fling the probe toward Geographos, a computer malfunction caused the spacecraft’s attitude control system to carry out an eleven minute burn that depleted the probe’s fuel and left it rotating at eighty revolutions per minute, making it impossible for Clementine to complete the asteroid flyby.94

In addition to the very valuable lunar data collected, Clementine served as a highly successful test-bed for twenty-three lightweight SDI technologies, all of which performed properly. A number of these technologies were directly related to the Brilliant Pebbles program. Specifically, Clementine’s cameras and sensors had been developed for BP. Clementine also verified the autonomous operational mode that was to have been employed with Brilliant Pebbles. This verification came during orbit number 303, when Clementine operated in a completely autonomous mode throughout the full orbit. Given these achievements, Ambassador Cooper was not wide of the mark when he wrote in May 2001 that “the Clementine deep-space probe successfully space-qualified nearly the entire suite of first-generation Brilliant Pebbles hardware... and software.”95

Beyond these accomplishments, Clementine lent support to the philosophy that had initially guided the Brilliant Pebbles development and acquisition process—the maximum use of commercial off-the-shelf components and a minimum reliance on hardware designed to military specifications. Those who developed Clementine referred to the probe as “a desktop computer hooked up to some camcorders and a mobile phone.”96

The success of Clementine also points up one of the basic characteristics of development programs like Brilliant Pebbles. The knowledge and technical developments spawned by such programs do not simply evaporate when a program is terminated. Instead, they remain in the technology base that supports U.S. aerospace developments.97

Brilliant Pebbles was an integrating concept that started out by drawing upon America’s broad technology base, military and commercial, for the components needed to make the interceptor a reality. During BP’s short four-year life, it enhanced these components and related knowledge, and both the components and the knowledge remained in the U.S. technology base when Brilliant Pebbles was canceled. Indeed, in 2001, Lawrence Livermore National Laboratory responded to renewed interest in space-based interceptors under the administration of President George W. Bush by resurrecting the Brilliant Pebbles technology and concept. This came in a proposal for a technology demonstration program aimed at developing “a new class of miniature kill vehicles.”98

Donald R. Baucom
BMDO Historian
November 2001

The Campaign to “De-weaponize” Space: Why America Needs to Defend Our Space Assets and Our Right to Deploy a Space-based ABM System

On December 13, 2001, President Bush announced that the United States was withdrawing from the 1972 Anti-Ballistic Missile [ABM] Treaty, pursuant to the terms of Article XV of that bilateral accord. The withdrawal became legally effective at the expiration of a six-month period of notice.

The termination of the ABM Treaty removed the only legal prohibition against the United States developing a space-based ABM system to protect itself and other countries against rogue states or terrorist groups who might either seek to slaughter large numbers of innocent people with Weapons of Mass Destruction (WMD) delivered via ballistic missile, or seek to use the potential of such an attack to blackmail the United States into abandoning an ally or making other concessions to tyranny or terror. Although a detailed discussion of the relative benefits of a space-based ABM system is beyond the scope of this article, it should be noted that many technical experts believe that such a system would be by far the most effective approach.

The issue being addressed here is broader than the ABM debate. The United States military in the twenty-first century is tremendously dependent upon space-based assets. We fight wars using precision munitions delivered to the war zone by aircraft guided by the Global Positioning System (GPS) and guided to within a few feet of their target by signals from multiple GPS satellites. Targeting instructions, weather, and numerous other data are provided to decision makers by other satellites. These satellites are undefended at present, and the technology already exists to destroy them.

Indeed, it is no secret that the People's Republic of China has been working on an advanced anti-satellite system of “parasitic satellites” designed to destroy key American military satellites during periods of crisis. In June, 2000, the chairmen and ranking minority members of the House and Senate Armed Services Committee appointed eleven members to the Commission on the Organization of National Security Space, created pursuant to the National Defense Authorization Act for FY 2000. Two other members were appointed by Secretary of Defense William S. Cohen in consultation with the Director of Central Intelligence. On January 11, 2001, the Commission – chaired by Donald Rumsfeld – issued its report, which concluded, inter alia:

Space systems are vulnerable to a range of attacks that could disrupt or destroy the ground stations, launch systems or satellites on orbit. The political, economic and military value of space systems makes them attractive targets for state and non-state actors hostile to the United States and its interests. . . .

The U.S. is more dependent on space than any other nation. Yet, the threat to the U.S. and its allies in and from space does not command the attention it merits from the departments and agencies of the U.S. Government charged with national security responsibilities. . . . The reality is that there are many extant capabilities to deny, disrupt or physically destroy space systems and the ground facilities that use and control them. Examples include denial and deception, interference with satellite systems, jamming satellites on orbit, use of microsatellites for hostile action and detonation of a nuclear weapon in space. . . .

As harmful as the loss of commercial satellites or damage to civil assets would be, an attack on intelligence and military satellites would be even more serious for the nation in time of crisis or conflict. As history has shown—whether at Pearl Harbor, the killing of 241 Marines in their barracks in Lebanon or the attack on the USS Cole in Yemen—if the U.S. offers an inviting target, it may well pay the price of attack. With the growing commercial and national security use of space, U.S. assets in space and on the ground offer just such targets. The U.S. is an attractive candidate for a “space Pearl Harbor.”
We have been warned, but forces are currently at work that would deny America the ability to defend its space-based assets. A few argue that such measures are already unlawful, but most legal experts—even those deeply committed to arms control—recognize that U.S. options can only be curtailed by making new law. So, both within the United States and around the world, a campaign is underway to pressure the United States to negotiate and ratify a new multilateral treaty prohibiting the militarization or “weaponization” of space. Support for such an effort is widespread around the globe, with Russia, China, and Canada playing prominent roles. Domestically, at least one announced presidential candidate has introduced legislation endeavoring to compel the President to join in this effort. On its face—without understanding the nature of the existing threat and our inability to verify compliance with such a treaty if we do leave our space resources vulnerable—the idea of “preventing a new arms race” in space will be attractive to a large number of Americans and their representatives.

It is therefore important for civic-minded members of the legal profession to be aware of these developments and to understand some of their ramifications. To that end, this article will briefly examine the existing legal regime governing military uses of outer space and the effort to bring into force new limitations—limitations motivated in large part by a perceived need to prevent the United States from building an effective anti-ballistic missile system now that the 1972 ABM Treaty has been terminated.

1. Legal Arguments Against Space-Based Ballistic-Missile Defense

Any effort to promote an effective ballistic-missile defense program, or other defensive systems involving the use of space, will undoubtedly face two related, but inconsistent, challenges. A few will contend that the corpus juris spatialis—the international law governing outer space—already prohibits the “militarization” or “weaponization” of space. This contention is so devoid of legal merit that all but the most hard-core opponents of BMD will fall back to the argument that international law ought to ban such uses of space, and going forward with a U.S. space-based ABM program will forever preclude that possibility and thus undermine “world peace” for eternity. But, as will be shown, this argument, too, is unpersuasive.

In reality, the “militarization” of space began with the first Sputnik launch in 1957, and virtually every space platform has at least some potential military use. Indeed, precisely because they have been used for military purposes, the existence of space-based platforms has contributed tremendously to the maintenance of international peace and security, upholding the UN Charter, and the promotion of fundamental humanitarian values.

For example, when the UN Security Council in November 1990 authorized the use of armed force in response to Iraq’s blatant aggression against neighboring Kuwait, the United States and its allies made regular use of satellites both to accomplish their military missions expeditiously and effectively and to reduce both “friendly fire” loses and “collateral damage” to innocent civilians to a minimum.

Most weapons systems are inanimate objects deriving any moral character from the purpose and manner in which they are used. A pistol in the hands of a policeman may prevent murder and uphold the rule of law. The same handgun could become an instrument of great evil in other hands. Large numbers of tanks, howitzers, and aircraft—backed up by the threat of nuclear retaliation by the United States—kept most of Europe free during the more than four decades of the Cold War. There is evidence that the threat of a nuclear response dissuaded Saddam Hussein from using weapons of mass destruction against United Nations coalition forces during Operation Desert Storm.

The debate over whether the United States should enter into a treaty prohibiting it from protecting its people and military forces—and, to the extent possible, protecting innocent potential victims in other countries as well—from attack by totalitarian rogue states or international terrorists will not likely be a short one. At present, neither the President nor two-thirds of the United States Senate seem so inclined. But, in the meantime, it is important to understand that a space-based ballistic missile defense system would not even arguably be in violation of America’s current obligations under international law, and moving to protect our people for growing catastrophic threats will not preclude a future decision to ratify a “non-weaponization” treaty any more than our initial investment in a rudimentary ABM system in the late 1960s prevented us from entering into the 1972 ABM Treaty with the Soviet Union.

2. The Prohibition Against National Ballistic Missile Defense

Until June 13, 2002, the United States was bound by treaty obligation “not to deploy ABM systems for a defense of the territory of its country” and “not to develop, test, or deploy ABM systems or components which are . . . space-based,” but that obligation ceased to exist when the United States acted pursuant to Article XV and withdrew from the 1972 ABM Treaty. Since that date, there have been no domestic or international legal obligations prohibiting the United States

Missile Defense, the Space Relationship, and the Twenty-First Century
from developing and deploying a space-based ABM system. The provisions of Article 2(4) of the UN Charter would, of course, prohibit the aggressive use of such a system.

3. The 1967 Outer Space Treaty

By far the most important treaty governing the use of outer space is the Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies (more commonly known as the “Outer Space Treaty”), which entered into force in October 1967 and currently has nearly 100 parties. It has been characterized by legal scholars as the “Magna Carta of Outer Space Law,” the “constitution of outer space,” and “the foundation for international legal order in outer space.” And because some have alleged that it prohibits a space-based ABM system, it is important to look at least briefly at the Treaty.

The lengthy preamble recognizes “the common interest of all mankind in the progress of the exploration and use of outer space for peaceful purposes,” but preambles are not binding under international law. The key operative language commonly relied upon by those who contend the Outer Space Treaty prohibits military activities is contained in Article IV, which provides:

States Parties to the Treaty undertake not to place in orbit around the Earth any objects carrying nuclear weapons or any other kinds of weapons of mass destruction, install such weapons on celestial bodies, or station such weapons in outer space in any other manner.

The Moon and other celestial bodies shall be used by all States Parties to the Treaty exclusively for peaceful purposes. The establishment of military bases, installations and fortifications, the testing of any type of weapons and the conduct of military maneuvers on celestial bodies shall be forbidden. The use of military personnel for scientific research or for any other peaceful purposes shall not be prohibited. The use of any equipment or facility necessary for peaceful exploration of the Moon and other celestial bodies shall also not be prohibited.

As the text suggests, the first paragraph of Article IV prohibits the orbiting or installation of weapons of mass destruction—that is, nuclear, chemical, or biological weapons—in space. Since none of the ballistic-missile defense proposals being considered by the United States involve the use of WMD, our focus should be on paragraph two, which is limited to “[t]he Moon and other [natural] celestial bodies.” Again, space-based BMD systems currently under discussion do not involve the “establishment of military bases, installations and fortifications,” the “testing of any type of weapons” or the “conduct of military maneuvers on celestial bodies.” So paragraph two of Article IV is also no impediment.

Many critics of ballistic missile defense would like to interpret the “peaceful purposes” language more broadly than its clear context permits. But the record of the treaty negotiations shows that several states pointed out that the “peaceful purposes” language applied only to activities on celestial bodies, and the text was not changed. This was thus not an oversight.

It is also important to understand that the term “peaceful purposes” in the Outer Space Treaty was understood to mean “non-aggressive” rather than “non-military.” This is clear both from the travaux preparatorie (preparatory works or negotiating history) of the Treaty and from its context, as it would have made no sense at all to place specific limits on bases, maneuvers, or weapons of mass destruction if all military uses of space were being outlawed. Further, Article IV makes specific reference to the permitted use of “military personnel” in space.

The point is sufficiently important that a bit of background may be useful. The term “exclusively for peaceful purposes” in connection with outer space first appeared in (nonbinding) UN General Assembly Resolution 1348 (XII), which was introduced by the United States and approved by the General Assembly on November 14, 1957. When it was first introduced, the United States subjectively contemplated a regime in which all military uses of outer space would be prohibited, and this view was endorsed by several other states as well. But the American view changed sometime between late 1958 and 1959, and the United States has since consistently taken the view that “peaceful purposes” means “non-aggressive” rather than “non-military” purposes. Indeed, in the early 1960s the United States Air Force began working on a Manned Orbiting Laboratory (MOL), and this program was ongoing when the Outer Space Treaty was negotiated. As the late Senator Albert Gore (father of the former vice president by the same name) told the United Nations General Assembly more than four decades ago, the “test of any space activities must not be whether it is military or non-military, but whether or not it is consistent with the United Nations Charter and other obligations of law.” It is noteworthy that during more than four decades no country has formally objected to the American definition that “peaceful purposes” means “nonaggressive” rather than “non-military.”

The Soviet Union also had ongoing military programs involving space in the late 1950s and early 1960s, but they were highly secret and—for propaganda reasons, as well as to try to block American space programs—Moscow argued that “peaceful purposes” precluded any military uses of space.
But as Soviet programs became more visible Moscow gradually acquiesced in the American position, which was clearly reflected in the text of the Outer Space Treaty.

Today, there is near universal agreement among states that the Outer Space Treaty does not ban non-aggressive military activities in outer space that do not involve weapons of mass destruction or take place on celestial bodies. This is evident in the behavior of even the strongest critics of any effort by the United States to deploy a space-based anti-ballistic missile defense system, because, rather than alleging such a program would be unlawful, they are calling for a new treaty that would either “demilitarize” or “de-weaponize” outer space.

4. “Peaceful Purposes,” the Antarctica Treaty, and the UN Charter

The "peaceful purposes" language of Article IV(2) of the Outer Space Treaty follows a pattern established by the 1959 Antarctica Treaty, and it is clear from even a casual examination of their texts that the Outer Space Treaty was in many respects patterned after the Antarctica Treaty. But rather than proving (as some argue) that the Outer Space Treaty was intended to preclude all military uses of space, the 1959 treaty demonstrates that the world community knew how to "demilitarize" a region when it so wished, and the departure from the language employed in the treaty they were using as a model clearly reflects an intention to depart from its meaning. Thus, Article I of the Antarctic Treaty provides:

Antarctica shall be used for peaceful purposes only. There shall be prohibited, inter alia, any measures of a military nature, such as the establishment of military bases and fortifications, the carrying out of military maneuvers, as well as the testing of any type of weapons.

The negotiators of the 1967 Outer Space Treaty clearly elected to apply this demilitarization regime only to “celestial bodies” like the Moon, and not to outer space in general.

It is also noteworthy that the language in question refers to peaceful purposes, and not to capabilities or uses. Purposes clearly refers to the subjective intentions of the actor, and thus a dual-use technology can presumably be used even on a celestial body if the purpose for which it is placed there is non-aggressive (and it does not otherwise violate an expressed prohibition of the Outer Space Treaty). As Major Christopher Petras, at the time Chief of Operational Law at U.S. Space Command, observed in a recent law review article: “Like a truck, a telephone, or a pair of binoculars, orbiting space stations have no inherent characteristics that make them civil or military; rather, it is how the space station is utilized that is key to determining its civil or military potential.”

A far better analogy than the Antarctica Treaty in understanding the current corpus juris spatialis is the 1982 UN Convention on the Law of the Sea, which in Article 88 provides simply: “The high seas shall be reserved for peaceful purposes.” This does not prohibit warships from traveling the high seas at will, from launching aircraft or transporting combat forces. It does not prohibit parties to the Convention from using their warships to launch missiles at the territory of other states so long as the operation is non-aggressive in nature.

Does this mean that it is lawful under the Outer Space Treaty for the United States to carry out activities in space that are not “peaceful” so long as they do not take place on celestial bodies? Certainly not, in the sense that this term is used in the Treaty. Because Article 2(4) of a different treaty, the United Nations Charter, clearly prohibits all aggressive uses of military force by states. This point is (unnecessarily) affirmed by Article III of the Outer Space Treaty, which provides:

States Parties to the Treaty shall carry on activities in the exploration and use of outer space, including the moon and other celestial bodies, in accordance with international law, including the Charter of the United Nations, in the interest of maintaining international peace and security and promoting international co-operation and understanding.

The fallacy of the argument that any capability to use military force is contrary to international law and a threat to world peace is apparent from the very first article of the UN Charter, which declares the organization’s primary purpose to be the maintenance of “international peace and security” by taking “effective collective measures for the prevention and removal of threats to the peace, and for the suppression of acts of aggression or other breaches of the peace ...” When the United States joined with other peace-loving nations in 1991 and used armed force to eject Iraqi forces from Kuwait, they were using military force to preserve international peace—clearly a “peaceful” purpose.

Among the oldest principles of international law is that states may use military force when necessary to defend themselves from aggression. This principle was not limited by the UN Charter, and indeed is expressly affirmed by Article 51.26 And measures taken by the United States to defend its territory, its people, its armed forces, or even its satellites in space from foreign attack are lawful both under the Outer Space Treaty and the UN Charter.
5. Opponents of American Ballistic-Defense Programs Admit Non-Nuclear Ballistic-Missile Defense is Not Contrary to International Law

After President Ronald Reagan announced in 1983 that the United States would seek to develop a national ballistic-missile defense system, Moscow announced an intention to seek a ban on space-based defenses through a new multilateral treaty. More recently, in order to “demilitarize the space environment,” Russia “has put a series of proposals before the United Nations that would have the effect of imposing a prohibition on the testing, deployment, and use of space weapons.”

More recently, at a May 2003 Pugwash Workshop in Spain, Andrey Vinnik of the Russian Ministry of Foreign Affairs lamented:

“The military activities currently prohibited in outer space by the international law are as follows:

- placement of nuclear and other WMD on orbit around the Earth, their installation on celestial bodies or stationing in outer space;
- nuclear weapons testing;
- establishment of military bases, installations and fortifications and conduct of military manoeuvres on celestial bodies (except for the Earth) or orbits around them;
- hostile activities or use of force on celestial bodies or orbits around them;
- military or any other hostile use of environmental modification techniques in outer space;

However insufficient perfection of the international legal regime, which carries out regulation of military space activity, nevertheless leaves an opportunity to place into outer space separate kinds of weapons;

The international law does not prohibit such kinds of military activity, for example, as placement in outer space of anti-satellite weapons; development and deployment in outer space of optical-electronic and radio-electronic jamming devices, etc.

Similarly, on June 7, 2001, Ambassador Hu Xiaodi of the People’s Republic of China submitted a working paper to the UN Conference on Disarmament entitled “Possible Elements of the Future International Legal Instrument on the Prevention of the Weaponization of Outer Space.” Obviously, if the Outer Space Treaty had prohibited the “weaponization of outer space” such a “future international legal instrument” would be unnecessary.

6. Leading Arms Control Proponents Acknowledge Space-Based Defenses are Not Illegal

With a few notable exceptions, some of the strongest opponents of American ballistic-missile defense programs have acknowledged that current international law does not constrain the kinds of programs being discussed in this paper. For example, during a panel discussion on April 14, 1998, John Pike—Director of the Space Policy Project of the Federation of American Scientists—responded to a question by observing:

“Under the Outer Space Treaty weapons of mass destruction, in practice nuclear weapons, are prohibited from being placed in orbit. There are currently no restrictions on ground-based anti-satellite systems. . . . Everything in between that, space lasers, a lot of the missile defense stuff, is more or less up for grabs. The presumption is that we are either currently permitted to or could rearrange the ABM restrictions to facilitate deployment of just about everything as long as it was not a nuclear weapon in space.”

Writing about the Outer Space Treaty in the February 2001 issue of the Center for Defense Information’s Defense Monitor, Dr. Nicholas Berry acknowledged:

“What is noticeable is what the Treaty leaves out. The defensive use of ballistic missiles with nuclear warheads—assuming compliance with self-defense provisions of Article 51 of the UN Charter—are not illegal. . . . Ballistic missiles do not orbit and they were purposely excluded. Weapons other than nuclear or of mass destruction are also allowed and can be placed in orbit. Lasers, conventional explosives, and kinetic devices can be deployed in space as an SAT system or as a launching pad for space-to-ground or space-to-air attacks.”

The self-described “progressive” British American Security Information Council (BASIC) has acknowledged that the U.S. withdrawal from the ABM Treaty “will leave the 1967 Outer Space Treaty (OST) as the only current legal bar on space weaponization. However, while the OST bans the placing of weapons of mass destruction in space, on the moon or other celestial bodies, it has no prohibitions on other weapons systems.”

At the above-mentioned May 2003 Pugwash conference, a paper prepared by experts from the United States, Norway, and the United Kingdom observed:

“A decision to deploy space weapons would not face many constraints

The legal framework governing space weapons is minimal. The only explicit rules regarding space weapons are those prohibiting conventional weapons on celestial bodies and weapons of mass destruction everywhere in space. Conventional space weapons are therefore legal as long as they are based on a satellite rather than the moon. The legal framework has been further weakened by the abolition of
In March 2003, a spokesperson for Project Ploughshares (an agency of the Canadian Council of Churches devoted to “peace and justice”) gave a press briefing in which she asserted:

We are currently standing at a crossroads in the development of outer space. First called for by US President Eisenhower in 1958, the principle that space would be used for peaceful purposes has been accepted for nearly 50 years. Although the term “peaceful purposes” was never clearly defined, it was accepted that this included military, communications, commercial, and scientific uses. But there is strong movement within the U.S. military establishment to expand the military uses of space to include war-fighting capabilities, to go beyond the accepted parameters of “peaceful uses” and the norm against placing weapons in space…

There is a broad international consensus opposing the weaponization of space and supporting the creation of a legal instrument banning the placement of weapons in outer space. Still, little progress has been made towards achieving this ban, while space has become increasingly militarized and the U.S. is taking steps to make space weapons a reality…

Space has been “militarized” since the earliest communications satellites were launched into orbit. Today, militaries worldwide rely heavily on satellites for command and control, communications, reconnaissance and monitoring, early warning, treaty verification, and navigation with the Global Positioning System (GPS). Research and development is frequently funded by defence contracts. States accept that “peaceful purposes” include military use, even that which is not particularly peaceful, and space is considered a sanctuary only in that no weapons are deployed there.55

Indeed, the relatively few serious assertions that are made that the Outer Space Treaty bans either the “militarization” or “weaponization” of space tend to either come from exuberate neophytes (such as in notes by law students) or are so obviously strained by the writers’ policy commitments as to be totally unpersuasive.

Professor Mark Markoff, of the University of Fribourg, Switzerland, has long asserted that Article I of the Outer Space Treaty precludes military use of outer space. Article I reads in full:

The exploration and use of outer space, including the moon and other celestial bodies, shall be carried out for the benefit and in the interests of all countries, irrespective of their degree of economic or scientific development, and shall be the province of all mankind.

The theory here apparently is that the "common interest" concept embodied in Article I is inherently inconsistent with any military use of space. But as the UN Charter makes clear, it is difficult to imagine any "common interest" of greater importance than maintaining international peace and deterring aggression. As already discussed, the contributions made by military uses of space during the 1991 effort by the world community to bring an end to Iraqi armed aggression against Kuwait belie any seriousness in such an argument.

Particularly unpersuasive is a letter to the editor of the June 2002 issue of Arms Control Today, in which two senior arms control lawyers argued that the Outer Space Treaty prohibited the “stationing of strike weapons of any sort in low-Earth orbit, including kinetic kill vehicles and lasers.” Noting that a 1963 UN General Assembly declaration of legal principles stated that “the use of space shall be carried on for the benefit and in the interests of all mankind...” John Rhinelander and George Bunn reasoned:

The Outer Space Treaty was intended to implement this principle. Its first article says that the use of space “shall be carried out for the benefit and in the interests of all countries.” The only weapons it explicitly bans from orbiting around Earth are nuclear and other weapons of mass destruction because they were the primary concern in 1967…

In fact, the Outer Space Treaty contains one overall rule: space shall be preserved for peaceful purposes for all countries. It requires any state considering activities that “would cause potentially harmful interference” with other states’ activities to undertake appropriate consultations. Similarly, other states may request consultations.

Further provisions for consultation were included to give the parties realistic opportunities to achieve post-1967 agreements on what the general provisions should mean in the future. For instance, if a state decided to test and possibly orbit in space an anti-satellite weapon (ASAT) utilizing a laser or kinetic kill vehicle, other states parties to the space treaty could request consultations. They could conclude that the treaty prohibits the orbiting of the proposed ASAT. We believe that such an interpretation could be a permissible interpretation of the treaty. Indeed, space testing or deployment of other future strike weapons that are inconsistent with “the benefit and in the interests of all countries,” within the meaning of the Outer Space Treaty, might produce a similar interpretation.”

This proposal from two of the most highly-regarded champions of arms control is truly alarming. To suggest that a state may be legally bound by a treaty to new terms clearly not contained in the treaty text and clearly opposed by that state during the negotiation process simply because a majority of parties decades later elect to “interpret” the treaty to incorporate a fundamentally broader scope—particularly a treaty affecting the fundamental right of sovereign states to defend themselves—would be a prescription to end the process of treaty-making by any rational state. This is not the law, and it should not become the law. It is true that, if they so wish, the parties to the Outer Space Treaty may alter its meaning and prohibit either the weaponization or even the militarization of outer space, but this could only be done by an amendment that would not be binding upon the United States without its consent.
Missile Defense, the Space Relationship, and the Twenty-First Century

7. Customary International Law Does Not Prohibit ABM Programs

International legal rules result both from written treaties and from what is called “customary international law,” as evidenced by a long-standing practice of states accompanied by a belief (opinio juris) that their conduct is legally required. The most authoritative behavior in determining the existence of such a rule are the practices of the states most affected by the alleged rule.

Obviously, the United States and the Soviet Union/Russia are by far the two states with the most active programs in space. And if either of them felt that space-based ballistic-missile defense systems were already barred by either conventional or customary international law they would have found no need to enter into a new treaty in 1972 prohibiting such conduct. The ban they created through that treaty—binding only the United States and the Soviet Union—lasted for three decades, but ceased to exist with the expiration of the ABM Treaty in June 2002.

The use of military satellites by the United States, Russia, and many other states also clearly refutes any suggestion that—despite the clear terms of the Outer Space Treaty—there has somehow developed a rule of customary international law prohibiting any military or defensive uses of outer space beyond those spelled out in the 1967 treaty.

8. The Logical Consequences of Prohibiting the “Militarization” or “Weaponization” of Space

At first impression, the idea of preventing any military use of outer space may seem attractive. No one likes war, and virtually anyone familiar with the George Lucas Star Wars fantasies would favor a more peaceful future for the world. But more serious reflection reveals the hidden “costs” that would accompany any effective prohibition against military uses of outer space.

One might start by considering the GPS, a system of two-dozen satellites that became fully operational in March 1994 and was designed by the U.S. military to pinpoint locations around the globe within a matter of feet. The primary purpose of GPS was to facilitate navigation and combat operations by the American military. It is used to guide missiles, bombers, fighters, tanks, and even foot soldiers as they engage an armed enemy in combat.

In part because of the remarkable accuracy of this then-incomplete technology, in 1991 the international coalition authorized by the UN Security Council was able to end Iraqi aggression against Kuwait in six weeks with only a tiny fraction of the predicted casualties on both sides. The old TERCOM (terrain contour matching) guidance system of earlier generations of cruise missiles was largely ineffective over the shifting sands of vast deserts. GPS guidance put them right on target time and again. Using satellite guidance systems, American tanks were able to charge across the barren terrain of the Arabian Desert while their Iraqi counterparts were confined largely to main roads. Search-and-Rescue operations were facilitated and minefields cleared with the use of GPS satellites.37

Satellites handled eighty-five percent of the communications needs of coalition forces in 1991, including more than 700,000 telephone calls each day. Joint Chiefs of Staff Chairman General Colin Powell asserted that satellites were “the single most important factor” that enabled the Coalition forces to build the command, control, and communications networks for Operation Desert Shield.38

General Norman Schwarzkopf’s brilliant “left hook” maneuver into Iraq in February 1991 was made possible in part because of satellite microwave imagery that analyzed the moisture content of the soil and found routes that could support the sixty-eight ton M-1 Abrams main battle tanks that led the attack.39 And when Saddam Hussein tried to counter by firing Scud missiles into other countries in the region, satellites detected the launches and helped coordinate the defensive responses40—which, nevertheless, often failed because the United States had done little to prepare in advance to defend against ballistic-missile attacks.

None of this would have been possible had military uses of outer space been outlawed. And, obviously, if GPS satellites must be destroyed in the name of demilitarizing space, their beneficial contributions to human safety and convenience in scores of other ways—from helping commercial ships and aircraft plot their course and avoid collisions, to helping lost recreational boaters and hikers find their way to safety when they lose their way or the sun goes down—will also be terminated.

Such a rule would also ban any use of satellites for meteorology, communications, imagery, and virtually any other purpose that might also serve a military end. Those unfortunate enough to live too far from local broadcast towers would no longer be able to access news or entertainment by satellite television, and any foreign news they could access would likely be days late in arriving in the absence of satellite communications.

Speaking at a panel discussion on April 14, 1998, sponsored by the NGO Committee on Disarmament at the United Nations, Ron Cleminson, Senior Adviser for Verification in the Canadian Department of Foreign Affairs, observed:
We talk about ‘weaponization of space’ and ‘the use of space for military purposes,’ but it is also indispensable to the whole arms control process. Without the use of space-based imagery, and space-based monitoring, we would not have any significant arms control treaties. In the early days of the Cold War between the U.S. and the Soviet Union, the major arms control treaties, the SALT treaties, the ABM Treaty, were monitored and verified by the use of space-based equipment and space-based sensors only. Without the use of military satellites there would not be an ABM Treaty, SALT or START treaties. So from an arms control perspective the military use of space can be beneficial.45

Nor would many of the benefits of military space platforms be preserved if a new treaty prohibiting the “weaponization” of space were to enter into force. Because GPS satellites are an integral component of numerous weapons systems—every bit as important in getting ordinance to its target as the bombs themselves or the aircraft that deliver them. And drawing artificial distinctions between gun sights, magazines, and bullets, or bombers and the communications systems that tell them when to attack what targets and provide the necessary GPS coordinates, makes little practical sense.

In a 1793 letter to James Monroe, Thomas Jefferson wrote:

I believe that through all America there has been but a single sentiment on the subject of peace & war, which was in favor of the former. The Executive here has cherished it with equal & unanimous desire. We have differed perhaps as to the tone of conduct exactly adapted to the securing it."

That sentiment is as valid today as it was 210 years ago, but it could be expanded to include not only “all America” but the entire world save for a small number of totalitarian tyrants. We should have learned on September 11, 2001, that—again to quote Jefferson—“[w]eakness provokes insult and injury, while a condition to punish, often prevents them.” Only the truly foolish, or those who for their own political agendas wish to see America weakened, would contend that to utilize our technological superiority to protect ourselves and other peace-loving peoples from attacks by terrorists and tyrants is a threat to international peace.

Those who recognize the legitimacy of an ABM system yet advocate outlawing such a program would do well to consider its demonstrated potential to defeat and deter aggression. Space-based platforms helped the U.S.-led coalition in 1991 bring Iraqi aggression to an end, uphold the rule of law, and restore peace to Kuwait. Countless additional lives would likely have been placed in jeopardy in the absence of this technology. To step backwards from that proud record of accomplishment and intentionally blind and weaken those forces that exist for our defense—in the process greatly increasing the risks of unnecessary collateral damage and friendly-fire loses when peace must be preserved—would neither promote world peace nor sound U.S. national security policy.

In summary, it is clear that the corpus juris spatialis at present does not prohibit the United States from taking appropriate defensive measures to safeguard its space-based assets or to protect its population or that of its allies against weapons of mass destruction attacks using ballistic missiles, save for the prohibitions in the Outer Space Treaty prohibiting military activities on the moon or other natural celestial bodies and banning the orbiting of weapons of mass destruction. Nor is there currently in force a legal regime prohibiting the “militarization” or “weaponization” of space. On the contrary, the United States and many other countries have incorporated space-based assets into military activities and weapons systems for many decades.

As a policy matter, particularly in light of the tremendous dependence of U.S. military forces today on space-based systems, anyone arguing that the United States should agree to a new legal regime that would leave our defensive assets at the mercy of hostile actions by any of a number of known or unknown potential adversaries—while giving us little of obvious value in return—must bear the burden of explaining why this is in America’s interest. Unfortunately, a campaign is now underway to pressure our government to acquiesce in just such a regime—driven at least in part by countries and groups that perceive “unchecked American military power” as the greatest threat to world peace in the foreseeable future.

It is important that members of the legal profession be aware of this campaign and advise policy makers and civic groups alike to look carefully at such proposals before jumping on any bandwagons in the name of peace or to “prevent Star Wars.” Our long-term ability to protect our people and the ability of our military to accomplish their missions in the years ahead may well be at risk if this campaign to “demilitarize” or “deweaponize” outer space is successful.

Professor Turner holds both professional and academic doctorates from the University of Virginia School of Law, where in 1981 he co-founded the Center for National Security Law. A former three-term chairman of the ABA Standing Committee on Law and National Security, he has chaired the Federalist Society’s National Security Law Subcommittee since its inception. After serving twice in Vietnam as an Army officer, he was a Public Affairs Fellow at Stanford’s Hoover Institution on War, Revolution, and Peace and later served five years as national security adviser to Senator Robert P. Griffin on the Foreign Relations Committee, special assistant to the Under Secretary of Defense for Policy, Counsel to the President’s Intelligence Oversight Board in the Reagan White House, and Principal Dep-

4 REPORT OF THE COMMISSION ON THE ORGANIZATION OF NATIONAL SECURITY SPACE, Executive Summary, Jan. 11, 2001, at xii-xiii.

6 The terms “militarization” and “weaponization” are distinct concepts, the first referring to preventing the use of space for “military purposes” and the second—a subcategory of the first—to preventing the basing in space of military weapons or major components of weapons systems.

8 Indeed, when the United States first proposed the idea of an arms control agreement limiting ABM systems the Soviet Union rejected the idea, noting that such systems were inherently “defensive” in character. It was only after Moscow realized that America was moving forward with developing such a system, and because of our superior technology were likely to surpass the Soviet system then being developed, that Moscow not only agreed to limit such weapons but insisted that it be done by formal treaty instead of the executive agreement format used for the SALT I agreement on offensive arms.

10 Id. Art. V.

11 U.N. CHARTER, Art. 2(4) (“All Members shall refrain in their international relations from the threat or use of force against the territorial integrity or political independence of any state, or in any other manner inconsistent with the Purposes of the United Nations.”).

16 UN General Assembly resolutions do not by themselves have the force of law, although they may be used to establish the existence of customary international law in certain circumstances.

17 Ramey, Armed Conflict on the Final Frontier 79.

19 Quoted in Anderson, A Military Look Into Space, note 78 and accompanying text.

21 Military scientific research is expressly envisioned by Article IV of the Treaty.

25 UN CHARTER, Art. I(1).

26 “Nothing in the present Charter shall impair the inherent right of individual or collective self-defense if an armed attack occurs.
against a Member of the United Nations, until the Security Council has taken measures necessary to maintain international peace and security. Measures taken by Members in the exercise of this right of self-defence shall be immediately reported to the Security Council and shall not in any way affect the authority and responsibility of the Security Council under the present Charter to take at any time such action as it deems necessary in order to maintain or restore international peace and security.” U.N. CHARTER, Art. 51.

29 Andrey Vinnik, Russia’s Approaches to Strengthening the International Legal Regime Prohibiting the Weaponization of Outer Space and Efforts for Building an International Coalition in This Sphere, Pugwash Meeting no. 283, Castell—n de la Plana, Spain, 22-24 May 2003, available on line at: http://www.pugwash.org/reports/nw/space2003-vinnik.htm.

36 George Bunn & John B. Rhinelander, Outer Space Treaty May Ban Strike Weapons, ARMS CONTROL TODAY, June 2002, available on line at http://www.armscontrol.org/act/2002_06/letterjune02.asp. George Bunn was General Counsel to the Arms Control and Disarmament Agency at the time the Outer Space Treaty was negotiated, and John Rhinelander served as Legal Adviser to the U.S. delegation to the SALT I negotiations in Moscow.

38 Quoted in id., note 23 and accompanying text.

39 Id. at note 26 and accompanying text.

40 Id. at note 27 and accompanying text. [[Maj. Douglas S. Anderson, A Military Look Into Space: The Ultimate High Ground, ARMY LAWYER, Nov. 1995,]]

41 Transcript available on line at: http://disarm.igc.org/outersp.html.

43 Jefferson to Jay, Aug. 23, 1785, 8 Papers of Thomas Jefferson 426, 427 (1953).
For America, the 1960s begin on an anxious note. Many in the U.S. feared the nation was lagging dangerously behind the Soviet Union in development of intercontinental ballistic missiles (ICBMs). In reality, secret photos from American spy satellites were about to confirm what high-flying aircraft had already shown: the so-called missile gap was not real.

But the Eisenhower administration could not reveal this knowledge to the public, and in 1960 John Kennedy won the presidency over Eisenhower’s vice president, Richard Nixon, partly on the strength of his stance on the missile gap.

When it came to space exploration, no one could be sure how much Kennedy would improve on his predecessor’s lukewarm attitude. Within months after entering office, however, Kennedy had no choice but to focus on human spaceflight.

On April 12, 1961, the Soviets launched a 27-year-old fighter pilot named Yuri Gagarin on the world’s first piloted space mission. In his spacecraft Vostok (“east”), launched atop a converted R 7 missile, Gagarin made a single orbit of the Earth, returning 108 minutes after liftoff.

The Soviets did not reveal that the Vostok had suffered a malfunction prior to reentry that almost killed Gagarin. When the cosmonaut returned unharmed and exhilarated by his flight, the Soviet Union had scored another key space victory.

Kennedy reacts

For the young American president, Gagarin’s flight came as a serious blow.

In Kennedy’s mind, competition with the Soviets in space had become vital to U.S. international prestige. On May 5, a former Navy test-pilot named Alan Shepard – judged by many to be the best pilot among the Original Seven astronauts – became the first American in space.

Inside his tiny Mercury spacecraft, which he named Freedom 7, Shepard rode a Redstone booster on a 15-minute sub-orbital flight. The nation reacted to Shepard’s feat with wild enthusiasm, and Kennedy took notice.

Kennedy had already been thinking about how to pull ahead of the Soviets in space. He’d asked his advisors to come up with a project that would give the U.S. a clear victory.

Less than three weeks after Shepard’s flight, speaking before a joint session of Congress, Kennedy made an announcement that would have seemed unthinkable just years before: “I believe this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the moon and returning him safely to the Earth.”

Many who heard these words – including some at NASA – wondered if Kennedy’s challenge was realistic. (A few even wondered if Kennedy had lost his senses.) But it didn’t take long for the space agency to begin figuring out how to achieve it.

Meanwhile, the space race sped onward with ever more ambitious flights.

John Glenn – the astronaut who seemed to step most easily into the role of American hero – became the first American to orbit Earth on February 12, 1962. Inside his Friendship 7 spacecraft Glenn circled the globe three times, marveling at the beauty of orbital sunrises and sunsets before sweating through a fiery reentry into Earth’s atmosphere.

Three more astronauts followed Glenn into orbit; in May 1963 the sixth and last piloted Mercury mission saw Gordon Cooper spending more than a day in space.

As important as these missions were for the U.S. program, they were overshadowed by the Soviet Vostok flights. Cosmonaut Gherman Titov made the first daylong flight in 1962. Andriyan Nikolayev in Vostok 3 and Pavel Popovich in Vostok 4 staged the first dual spaceflight in 1963. Also in 1963, a former cotton mill worker and parachute jumper named Valentina Tereshkova became the first woman in space, logging almost three days in Vostok 6.

And the Soviet firsts didn’t end there. Under pressure from Soviet premier Nikita Khrushchev, chief space de-
signer Sergei Korolev staged another orbital “spectacular.” The Americans were planning their two-man Gemini flights, but Korolev upstaged Gemini’s planned debut by launching three cosmonauts in a “new” spacecraft called Voskhod (“sunrise”).

In reality, Voskhod 1 was nothing more than a converted Vostok. Only by taking the dangerous step of denying the cosmonauts ejection seats and spacesuits was Korolev able to achieve the feat. Fortunately, Voskhod 1 flew without mishap.

But that wasn’t true for the Voskhod 2 team of Pavel Belyayev and Alexei Leonov, who made their day-long mission in March, 1965.

Early in the flight, a spacesuited Leonov wriggled into a narrow, inflatable airlock attached to the Voskhod’s cabin, leaving Belyayev to pilot the ship. Leonov then emerged into the void and spent several minutes floating free in history’s first spacewalk.

Leonov almost didn’t live to tell the tale: In the vacuum of space his suit ballooned dangerously, making it almost impossible for him to get back inside. Only by releasing some of his suit’s air – an almost desperate measure, considering the risk of decompression sickness – was the exhausted cosmonaut able to reenter the cabin.

Once again, the world was not told of these difficulties, and Leonov’s feat seemed to leave the U.S. program in the dust. But it would not be long before the Americans caught up.

A bridge to the moon

Even as the Soviets racked up one space first after another, NASA was getting closer to the first piloted Gemini missions. Launched by a converted Titan 2 missile, Gemini was the most sophisticated spacecraft yet created. Gemini astronauts would utilize an on-board computer. And they would be able to change their orbit – something no Soviet crew had yet accomplished.

For NASA, Gemini would serve as a bridge between the relatively simple Mercury flights and the awesome challenge of the Apollo moon program.

In just 20 short months, between March 1965 and November 1966, 10 Gemini crews pioneered the techniques necessary for a lunar mission. They made spacewalks, some lasting more than two hours. They spent a record-breaking 14 days in space – the expected duration of a lunar-landing flight – in a cabin no bigger than the front seat of a Volkswagen. (One astronaut later called the two-week Gemini 7 flight “the most heroic mission of all time.”)

They mastered the arcane complexities of orbital mechanics to achieve the first rendezvous between two spacecraft in orbit, and the first space docking. And they made the first controlled reentries into Earth’s atmosphere.

To be sure, the Gemini missions had their harrowing moments, none more so than when Gemini 8 astronauts Neil Armstrong and Dave Scott barely escaped disaster when one of their maneuvering thrusters malfunctioned, causing their spacecraft to tumble wildly through space.

And several spacewalkers had their own difficulties – working in weightlessness was trickier than NASA expected, and more than one sortie had to be cut short when an astronaut became exhausted. Despite these problems, Gemini was considered a tremendous success. It gave the United States the lead in the space race, which was about to become a moon race.

Robotic Explorers

Meanwhile, the Americans and Soviets were extending humanity’s reach beyond Earth orbit by means of ever more sophisticated robotic probes. The U.S. Mariner 2 became the first interplanetary spacecraft when it flew by Venus in 1962 and sent back data about this cloud-shrouded world. Another American craft, Mariner 4, took the first closeup pictures of Mars in 1965.

Closer to home, in 1966, the Soviet Union achieved the first soft landing of a spacecraft on another world when
Luna 9 came to rest on the moon's Ocean of Storms and sent back images of its dusty surface.

Also in 1966, U.S. Surveyor landers began exploring the lunar surface, and a series of Lunar Orbiter spacecraft began a detailed photoreconnaissance of the moon from orbit. These missions not only advanced scientific understanding of Earth's nearest neighbor; they helped pave the way for the piloted missions that would follow.

Disaster and triumph

By 1967, both the United States and the Soviet Union were ready to test the spacecraft they would use to send humans to the moon. In the process, both countries suffered devastating failures.

On January 27, 1967 the crew of the first piloted Apollo mission – veterans Gus Grissom and Ed White, along with rookie Roger Chaffee – perished when a flash fire swept through the sealed cabin of their Apollo 1 command module. NASA's investigation of the tragedy revealed numerous technical flaws in the craft's design, including the need for a quick-opening hatch and fireproof materials in the cabin. The fire would ultimately delay the Apollo program for more than 20 months.

Disaster struck the Soviets in April 1967, when cosmonaut Vladimir Komarov piloted Soyuz 1 (“union”), an Earth-orbit precursor of a planned lunar-orbit vehicle. When Komarov’s flight was plagued by malfunctions, controllers ordered him to come home early. But the craft’s parachute did not deploy properly and Soyuz 1 slammed into the Earth’s surface at tremendous speed, killing Komarov. The Soviets too had found that winning the moon race could exact a terrible price.

For the Americans, at least, 1967 ended on a triumphant note with the debut of the giant Saturn 5 moon rocket. Towering 363 feet (110 meters) above its launch pad, the Saturn’s three stages contained as much chemical energy as an atomic bomb.

When it lifted off on November 9, powered by 7.5 million pounds of thrust, the Saturn’s fire and thunder were truly awesome to behold. For NASA, the Saturn 5’s flawless test flight marked a key milestone on the road to the moon.

Apollo rising

Americans returned to space on October 11, 1968, when the crew of Apollo 7 made an 11-day Earth-orbit test of the Apollo command and service modules, which had been redesigned in the wake of the fire.

The flight went so well – one mission controller dubbed it “101-percent successful” – that NASA decided to take a stunningly bold step with Apollo 8 – its crew would orbit the moon.

There was a note of urgency in the plan: Intelligence reports showed that the Soviets, who had recovered from the loss of Soyuz 1, were planning to send two cosmonauts on a circumlunar flight before the end of the year.

But after two pilotless circumlunar test flights experienced malfunctions in the fall of 1968, Soviet officials refused to give the go-ahead for a piloted mission.

The way was clear for the Apollo 8 crew – Frank Borman, Jim Lovell and Bill Anders – to make history.

On December 24, 1968, after a 66-hour journey across 230,000 miles (370,140 kilometers) of space, the three men fired their spacecraft’s main engine to go into lunar orbit. They remained there for 20 hours, making navigation sightings, taking photographs and beaming live television pictures back to Earth, before returning home.

After a reentry at 25,000 m.p.h. (40,230 kilometers per hour) – faster than humans had ever traveled – Borman’s crew splashed down safely in the waters of the Pacific.

Timetable of Piloted Space Missions: 1960s

<table>
<thead>
<tr>
<th>Achievement</th>
<th>Country</th>
<th>Crew</th>
<th>Spacecraft</th>
<th>Launch Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>First human in space</td>
<td>Soviet Union</td>
<td>Gagarin</td>
<td>Vostok 1</td>
<td>April 12, 1961</td>
</tr>
<tr>
<td>First American in space</td>
<td>United States</td>
<td>Shepard</td>
<td>Freedom 7</td>
<td>May 5, 1961</td>
</tr>
<tr>
<td>First daylong spaceflight</td>
<td>Soviet Union</td>
<td>Titov</td>
<td>Vostok 2</td>
<td>August 6, 1961</td>
</tr>
<tr>
<td>First woman in space</td>
<td>Soviet Union</td>
<td>Tereshkova</td>
<td>Vostok 6</td>
<td>June 16, 1963</td>
</tr>
<tr>
<td>First multi-person spaceflight</td>
<td>Soviet Union</td>
<td>Komarov, Yegorov, Feoktistov</td>
<td>Voskhod 1</td>
<td>October 12, 1964</td>
</tr>
<tr>
<td>First spacewalk</td>
<td>Soviet Union</td>
<td>Belyayev, Leonov</td>
<td>Voskhod 2</td>
<td>March 18, 1965</td>
</tr>
<tr>
<td>First 8-day space mission</td>
<td>United States</td>
<td>Cooper, Conrad</td>
<td>Gemini 5</td>
<td>August 21, 1965</td>
</tr>
<tr>
<td>First space rendezvous</td>
<td>United States</td>
<td>Schirra, Stafford</td>
<td>Gemini 6</td>
<td>December 15, 1965</td>
</tr>
<tr>
<td>First two-week space mission</td>
<td>United States</td>
<td>Borman, Lovell</td>
<td>Gemini 7</td>
<td>December 4, 1965</td>
</tr>
<tr>
<td>First space docking</td>
<td>United States</td>
<td>Armstrong, Scott</td>
<td>Gemini 8</td>
<td>March 16, 1966</td>
</tr>
<tr>
<td>First lunar-orbit flight</td>
<td>United States</td>
<td>Borman, Lovell, Anders</td>
<td>Apollo 8</td>
<td>December 21, 1968</td>
</tr>
<tr>
<td>First lunar landing</td>
<td>United States</td>
<td>Armstrong, Collins, Aldrin</td>
<td>Apollo 11</td>
<td>July 16, 1969</td>
</tr>
</tbody>
</table>
Apollo 8 was more than a technical triumph, more even than a milestone in exploration: It was a mountaintop experience for the entire human species. A single photograph from Apollo 8, showing Earth rising beyond the moon’s barren horizon, became one of the century’s most famous and inspiring images.

For the Soviets, Apollo 8’s success was a sting ing defeat that seemed to take the wind out of their own moon effort, at least temporarily. For NASA, it had the opposite effect. Now the way was clear to attempt the lunar landing. If all went well on Apollos 9 and 10, Apollo 11 would try for a landing the next summer. But that was a big “if;” each mission ranked as one of the most complex and difficult space missions ever attempted.

Amazingly, both flights – Apollo 9, an Earth-orbit test of the entire Apollo spacecraft and Apollo 10, a “dress rehearsal” for the landing in lunar orbit – were almost flawless.

When Apollo 10 splashed down on May 26, Neil Armstrong and his Apollo 11 crew had less than two months left to prepare for the ultimate test flight.

To land on the moon
July 16, 1969 dawned clear and hot for the spectators (estimated at a million people) who flocked to Cape Kennedy for the Apollo 11 launch.

They were not disappointed.

At 9:32 a.m. (13:32 GMT), the Saturn 5 came to life, its fire akin to a second sun, its roar shattering the morning stillness as it sent Armstrong and crew mates Buzz Aldrin and Mike Collins on history’s third lunar voyage. Three days later the men arrived in lunar orbit, knowing that their real mission – the landing attempt – was about to begin.

On July 20, Armstrong and Aldrin, clad in their space suits, took their places in the tiny cabin of the lunar module, Eagle, leaving Collins to pilot the command ship, Columbia. The two ships separated, and with a blast from their lander’s descent engine, Armstrong and Aldrin began their trip down to the moon’s Sea of Tranquility.

At 50,000 feet (15,240 meters) they ignited Eagle’s engine once more, beginning the landing’s final phase, called the powered descent. Everyone knew there could be problems, and there were: On the way down, an overloaded computer threatened to abort the mission; only quick thinking by experts in Mission Control allowed Armstrong and Aldrin to continue.

A thousand feet (305 meters) above the lunar surface, Armstrong saw that the craft was heading for a crater the size of a football field that was rimmed with boulders as big as automobiles.

Taking control, he steered Eagle to a clear spot and brought the craft into a vertical descent, while Aldrin called out the diminishing altitude. With his fuel supply running low, Armstrong struggled to see his landing spot through a storm of moon dust kicked up by the descent engine.

Finally, a blue light on the instrument panel signaled that three metal probes on Eagle’s footpads had touched the moon.

“Contact light,” announced Aldrin. Eagle settled gently onto the dusty lunar ground and Armstrong shut down the engine. The two men turned to each other and shook hands in a brief moment of celebration.

Then Armstrong radioed to a waiting Earth, “Houston, Tranquility Base here. The Eagle has landed.”

Almost seven hours later, Armstrong emerged from Eagle. After descending the ladder on the craft’s front landing leg, he planted his left foot on the ancient dust of the Sea of Tranquility and declared: “That’s one small step for [a] man, one giant leap for mankind.”

Minutes later, Aldrin joined him on the surface, and for a bit less than two hours, the two men collected rocks, planted the American flag and took pictures.

They also experienced the delights of moving in the moon’s one-sixth gravity and marveled at the beauty of the utterly pristine, utterly ancient lunar landscape. Then it was time for history’s first moonwalk to end, as the astronauts climbed back into their lander for a restful flight.

On July 21, the moment of truth for Armstrong and Aldrin was at hand: the firing of Eagle’s ascent rocket to return them to lunar orbit, and a reunion with Collins. Everyone, on Earth and in space, knew that the engine had to work, or Armstrong and Aldrin would face a lonely death on the moon.

When the prescribed moment came, Aldrin pushed a button on the on-board computer and, after a brief moment, the engine ignited with an invisible flame. Amid a spray of insulation, Eagle ascended like a superfast, silent elevator, heading for a rendezvous with Columbia. Apollo 11’s safe return on July 24 marked the beginning of a new age, one in which human beings could truly be called space-faring species.

For NASA, the age of lunar exploration was only beginning: More landings were ahead, including Apollo 12’s pinpoint lunar touchdown in November.

The United States had won the moon race. But the 1970s would bring a change of fortunes for the space agency, while the Soviet Union blazed a new trail, as pioneers of long-duration space missions.
Maldon Institute Memorandum on the World Peace Council

Memorandum to the Independent Working Group on Missile Defense
Submitted 18 August 2004

Introduction
The World Peace Council (WPC), a prime international conduit for communist propaganda and covert action, was conceived by the politburo of the Union of Soviet Socialist Republics (USSR) at an obscure Polish village 56 years ago.

Among those present at the Polish meeting were Mikhail Suslov, responsible for the USSR's ideological warfare campaigns; Irene and Frederic Joliot-Curie, French Nobel Prize winners; Pablo Picasso, the Spanish artist; Pablo Neruda, a Chilean poet; Pablo Casals, the Spanish cellist; and Paul Robeson, an American singer.

As World War II ended in Europe in 1945, the Cold War between the United States and the USSR was beginning. In that same year the Kremlin's leadership decided to institute the Information Bureau of the Communist and Workers Parties, known as the Cominform. Essentially, this was a Stalinist deception, eliminating, as a sop to the West, the Communist International (Comintern) and replacing it with the equally powerful Cominform.

Four years later, in 1949, Mikhail Suslov, the Soviet Union's Politburo member responsible for ideological warfare campaigns, addressed the third meeting of the Cominform and stated:

“Particular attention should be devoted to drawing into the peace movement trade unions, women's, youth, cooperative, sport, cultural, education, religious, and other organizations, and also scientists, writers, journalists, cultural workers, parliamentary, and other political and public leaders.”

With very minor alterations in wording, Suslov's statement was adopted by the participating Communist parties as a resolution which committed the Moscow-line parties to the "peace" effort. ["Resolution of the Meeting of the Communist Information Bureau, November 1949, One the Report of M. Suslov," Workers Champion Unity for Peace, New Century Publishers, February 1950.]

The World Peace Council
The WPC emerged as an organization in 1950. Among the Communist-controlled organizations that evolved and were established by the Soviet Union during the succeeding years were the Afro-Asia People's Solidarity Organization (AAPSO); International Association of Democratic Lawyers (IADL); International Federation of Resistance Fighters (FIR); International Organization of Journalists (IOJ); International Union of Students (IUS); Women's International Democratic Federation (WIDF); World Federation of Democratic Youth (WFDY); World Federation of Scientific Workers (WFSW); World Federation of Trade Unions (WFTU); and the World Peace Council. Another front that grew in importance was the Christian Peace Conference (CPC), which was under Soviet control from 1968 and continues to operate in tandem with the WPC.

The WPC was housed at the same Moscow address – 36 Prospect Mira – as the Soviet Peace Fund (SPF), later the Russian Peace Fund, claiming 35-member states, was controlled by the International Department of the former Communist Party of the Soviet Union (CPSU). As the USSR began to disintegrate, the WPC moved its headquarters to Lonnrotinkatu 25, in Helsinki, Finland.

Just prior to and after the abortive coup that attempted to restore the CPSU oligarchs to power in August 1991, Oleg Kharkhardin, a SPC representative, arrived in the Finnish capital as the new Soviet secretary to the WPC carrying a "one time financial gift" of at least $2 million to the WPC. Informed speculation is that this, and similar gifts to more than a dozen groups controlled by the International Department, were made before the demise of the USSR two months later.
The $2 million was placed in a fund to continue the operations of the WPC, managed by a small and secret group that included Kharkhardin and the then WPC Executive-Secretary, Ray Stewart, a New Zealander.

During the past decade, the WPC has experienced several moving experiences, first from Helsinki to Prague, thence to Paris and, for the past four years, to Othonos Street, 10557 in Athens, Greece.

The Stockholm Peace Appeal
Since 1950, when its first initiative was to launch the Stockholm Peace Appeal, the World Peace Council was the Soviet Union’s single most important international front organization. The WPC’s first Stockholm Peace Appeal sought an absolute ban on the atomic bomb at a time when the Soviet Union’s nuclear capability lagged far behind the United States.

The 1950 Stockholm Appeal declared that “the first government to use the atomic weapon against any country whatsoever would be committing a crime against humanity and should be dealt with as a war criminal.” This theme was promoted by leaders of every U.S. disarmament drive.

Meeting in Sofia, Bulgaria, in February 1974, the World Peace Council set up a new body, the “Conference of Representatives of National Peace Movement,” to meet annually and coordinate building up local WPC affiliates, particularly in the non-Communist countries. The December 1974 meeting in Prague, Czechoslovakia, of this WPC body, chaired by Romesh Chandra, discussed implementation of the WPC’s 1975 “program of action” that included “special efforts... to draw new forces into their ranks.”

The Prague WPC meeting issued an appeal entitled “Make Détente Irreversible,” which considered disarmament and U.S.-Soviet arms control agreements the key to “reducing tensions.” But the WPC’s Prague appeal also demonstrated that their goal was to reduce American and NATO military strength, which was “provoking tension,” and that in its view détente would not be “irreversible” until the West got rid of its nuclear and conventional forces. The WPC appeal explained that détente was necessary because “détente created more favorable conditions for the waging of the people's struggles. ... The context of détente loosens the grip of imperialism on oppressed nations and on newly independent states dominated by multinational corporations.”

1975 New Stockholm Campaign
Disarmament was the subject of four “commissions” of the May 30 to June 2, 1975 WPC Presidential Committee meeting in Stockholm. The topics were:

1 – Ending the arms race and international détente;
2 – Disarmament and development (social and economic consequences of the arms race);
3 – Dangers of development of new types of weapons (imperialist methods of warfare);
4 – Peace and nuclear weapon-free zones as a contribution to ending the arms race.”

In addition to representatives of the WPC’s national affiliates, international organizations sending representatives to this WPC meeting included the Women’s International League for Peace and Freedom (WILPF), the Stockholm International Peace Research Institute (SIPRI), UNESCO and the World Federation of United Nations Associations (WFUNA). According to the WPC, all participants in the Presidential Committee meeting signed the WPC’s New Stockholm Appeal petition initiated at the meeting.

The WPC’s dual emphasis on supporting revolutionary terrorist movements while promoting Western disarmament was shown in the decision of the WPC Presidential Committee at that meeting to award its Joliot-Curie Gold Medal simultaneously to the chief of the Palestine Liberation Organization (PLO), Yasir Arafat, and to Bram Fischer, a white Afrikaner member of the South African Communist Party who led the terrorist arm of the African National Congress (ANC) in a sabotage and terrorism campaign in the early 1960s. Fischer died of cancer while serving a life imprisonment term for his terrorist crimes.

The WPC’s “New Stockholm Appeal” closed with a request for collaboration “to all governments and parliaments, all peace and other movements, to political parties, trade unions, women’s and youth organizations, to religious, social and cultural bodies which are engaged in endeavors for mankind’s advance, to join hands in a great new worldwide offensive against the arms race.”

Of course it was tremendously convenient for the WPC that the Communist governments, the Soviet Union’s Third World client states, national peace committees, Communist parties, and a network of WPC-allied international Communist front organizations were already in place through which outreach to trade union, women’s and youth, religious, social and cultural groups could be made.

As the new disarmament campaign escalated during the next decade, the Communist Party, U.S.A. - (CPUSA) controlled World Peace Council affiliates, then operating in the United States, moved to harness the organizational structures built during the anti-Vietnam agitation, and unrelated international and domestic social issues to the new disarmament campaign.

On reviewing the WPC’s activities in the United States since its formation, it must be emphasized that although
the WPC enjoyed a measure of “credibility,” particularly in Africa and other Third World countries, an examination of the WPC’s ostensible support for “peace” shows that its efforts coincided without deviation from support of Soviet international policies and goals, through backing revolutionary terrorist “national liberation movements” to supporting sweeping Soviet disarmament initiatives that provided neither for international controls nor inspections.

The philosophy of the WPC is well described in its own words: “U.S. imperialism has committed yet another blatant crime using its war machinery and tremendous military build-up thousand of miles away from the U.S.A. in an attempt to intimidate and force into submission those who defend their independence and sovereignty.”

Controlling The World Peace Council
The WPC was, at least until 1994, a creature of the Kremlin. Operating under the direction of the CPUSA International Department headed by Boris Ponomarev, a secretary of the CPSU Central Committee and candidate member of the Politburo who worked under Suslov’s direction for more than 30 years, the WPC increasingly took an expanding role in Soviet agitation and propaganda operations.

The WPC’s stated goals in the 1970s, and to the end of the Cold War, were to mobilize public pressure to block U.S. plans to modernize NATO’s Theater Nuclear Forces (TNF) with medium-range Pershing II and cruise missiles, and to upgrade NATO’s anti-tank capability with enhanced radiation warheads (neutron bombs). Also targeted was U.S. plans to upgrade strategic nuclear forces with MX mobile missiles and the B-1 bomber, the shelving of the unratified SALT [Strategic Arms Limitation Talks] II treaty, and U.S. Rapid Deployment Force and naval forces in the Indian Ocean and Persian Gulf area.

Organizationally, the WPC was salted with members of the pro-Soviet Communist parties and with reliable pro-Soviet leftists. The WPC’s president was for many years, Romesh Chandra, 85, who was in the 1960s a member of the Central Committee of the Communist Party of India. In 1978, the Central Intelligence Agency (CIA) prepared a non-classified study of Soviet propaganda operations which the House Intelligence Committee published as part of its hearing, The CIA and the Media. That report said in part:

“Yet the Kremlin does not rely on Chandra alone to carry out its policies in the WPC. A representative of the Soviet Communist Party has for years sat at Chandra’s side, in a background role, but holding ultimate control. This position was held for a number of years by Aleksandr Berkov, but the job was taken over in early 1977 by Igor Belyayev. Berkov and later Belyayev were listed only as one of a number of secretaries in the Secretariat, but they were recognized within the organization as the final authority, including the power of veto. Berkov, for example, was known to have overruled Chandra on certain decisions involving meetings or other activities and relayed the party line concerning WPC causes and operations.”

The study said that the International Department “is responsible for major clandestine political activities abroad including the front organizations, foreign Communist parties and activities such as strikes and demonstrations designed to destabilize foreign governments.”

In terms of power in Moscow, the report stated that the International Department “stands firmly over the KGB for clandestine political activities,” and that in these matters, the KGB may act only on the direction of the International Department.

Most of the WPC leaders were active in the Communist parties of their own countries and also led the local WPC affiliate. These WPC “national peace committees” in turn are run as fronts of the local Moscow-line Communist parties which, like the WPC, were directed by the International Department of the CPSU. That provided two mechanisms for ensuring that the resolutions and statements of the local WPC affiliates did not deviate from the line set by the Soviet Communist Party.

The Revised World Peace Council
In May 2004, the World Peace Assembly, the governing body of the WPC, met in Greece and elected Orlando Fundora, 77, a Cuban, as its president. According to Fundora, from 1990 to 1994, attempts by delegates, led by the Russians, attempted to turn the WPC into a “bland, odorless, colorless council – an organization that would not upset anyone.” Fundora added, “It was visible that the collapse of the socialist camp debilitated the Council very much at the time.”

At a conference in Mexico ten years earlier, Japan, France, Portugal, Palestine and Cuba created a new secretariat (its predecessor had disappeared) and the “debilitating tendencies” from Scandinavia and other European states were challenged and defeated. Joining the six state delegations already noted, were Mexico, Costa Rica, Panama, Ecuador, Argentina, the Dominican Republic, Canada and the United States. The revivified WPC marked its success by a statement attacking “NATO’s genocidal action in the war against Yugoslavia.”

In May 2004 at the Athens meeting there were 134 delegates from 62 organizations from 47 countries. (Orlando Fundora’s figures were 150 delegates, 60 member-organizations and 50 countries.) There were numerous declarations that ranged from support for Slobodan Milosevic to attacks
on the United States and its allies worldwide, through de-
nunciations of NATO and its policies and the presence of U.S.
troops in Iraq, Afghanistan, Korea, the Balkans and Haiti.

Fundora was named as president, Hong Ha, vice presi-
dent of the Vietnam Peace Committee, vice president and
Coordinator for Asia; Thanassis Parfilis, from Greece was
elected General Secretary. Romesh Chandra together with
Evangelos Mahairas of Greece, both former communists and
presidents of the WPC were named Presidents of Honor.

As the Marxists say, “The Struggle Continues!”
Summary Statement on East Coast Missile Defense

Ronald C. Tocci

New York State Armed Forces Legislative Caucus
Tuesday, May 25, 2004

SUMMARY STATEMENT

We really are considering two matters here: one is whether the United States Government will provide the people of New York and the rest of the nation with a full and effective defense against a missile attack from anywhere in the world.

The other is whether or not our government can be persuaded to remove the political barriers in order to bring this about, so that, for instance, we can proceed with the development of regional East Coast defenses against short-range sea-borne Scud missiles, this as a building block leading – through concurrent efforts – toward a space-based system that can provide global protection.

And, for those who still doggedly maintain that missile defense is technologically impossible – even in the face of overwhelming evidence to the contrary – I draw your attention to Spirit and Opportunity. Any nation that can put a couple of robots on Mars to select and analyze tiny pieces of rock and move selectively through the Martian landscape is a nation that most assuredly is capable of taking out a missile that’s been fired at its people. Or, if that’s not a good enough example, how about a sea-launched cruise missile that can find somebody’s mailbox 600 nautical miles away?

No. The impediments we face today are political not technical. They come from a 30-year-old political decision by the U.S. Government to hold the American people deliberately hostage to the offensive weapons of another nation – in this case the entire nuclear arsenal of the Former Soviet Union.

The idea was that both the Soviets and the Americans would hold their peoples hostage to each other’s nuclear weapons to create a “Balance of Terror.” Simply put: “You nuke our kids and we’ll nuke yours!”

In other words, the U.S. Government’s way of defending its people against an attack was to wait until the nation first had been struck by one or more nuclear warheads – resulting in the likely deaths of millions before we would even think about striking back to kill even more millions, providing we had the stomach for it.

In 1972, the ABM Treaty was put into place to enforce this MAD doctrine. And for 30 years we adhered strictly to its provisions, so that the American people were thus deprived of constructive efforts to deploy missile defense systems – a unique form of government denial of protection that has never before nor since been accorded to the people of this nation.

Then, in 1989 the Berlin Wall came down and in 1991 the Soviet Union became extinct, to be replaced by Russia as the dominant force in the Commonwealth of Independent States. By that time, however, other nations were building their nuclear arsenals – China, North Korea, Iran, India, Pakistan, Libya, and so on, with Russia and other parts of the CIS still laying claim to thousands and thousands of nuclear warheads, which raised then and continues to raise now huge nuclear security and stability problems – such as an unauthorized or deliberate launch by either a sovereign state or terrorist group.

As a consequence to all of this, in June, 2002, President Bush withdrew the United States from the ABM Treaty, and since then, the government has been moving in a somewhat off-again-on-again fashion in dealing with this now 45-year-old idea of defending our people from missile strikes – the laid-back pace of which is becoming a real curiosity in this post-9/11-21st-Century era of unmitigated terror and violence.

Which is why we are here. We want to get something going on the East Coast quickly – before we lose something else
– and we want to see more purposeful and forthright action in moving toward at least a limited global protection system, which requires inclusion of a space-based system.

But there is something amiss that’s holding us back that is neither technical nor economic. It is the lingering ghost of MAD.

In spite of the ABM Treaty withdrawal, the doctrine of Mutual Assured Destruction still remains the driving intellectual force upon which much of the opposition constructs its several different public arguments as to why missile defense is “unworkable” or “dangerous” or “provocative” or “threatening” or “destabilizing” or “wasteful” or “imperialistic” or “unnecessary” or “selfish” or “immoral.”

Right now MAD is being held in place by the cultures it has created, rather than by some legal instrument – this as a consequence of over 40 years of application in which its basic precept – that of holding the American population hostage to someone else’s weapons – has been a constant in the calculus of both the political and the strategic cultures that have driven significant parts of U.S. foreign, security and defense policies for so many years.

Evidence of this abounds. Here are some recent examples.

Forty-nine retired generals and admirals wrote to the President on March 26, 2004 urging the postponement for technical reasons of ground-based strategic mid-course ballistic missile defense, which may or may not be valid. But what is more significant is a follow-on paragraph which basically denigrates the importance of this and presumably other systems, because:

U.S. technology, already deployed, (presumably our high-tech spy satellites, precision ordinance, and formidable arsenals of offensive nuclear weapons) can pinpoint the source of a ballistic missile launch. It is, therefore, highly unlikely that any state would dare to attack the U.S. or allow a terrorist to do so from its territory with a missile armed with a weapon of mass destruction, thereby risking annihilation from a devastating U.S. retaliatory strike.

Translation: It’s not really necessary to defend our population, since if someone is foolish enough to strike at us, we will nuke them. We’ll be safe, because they wouldn’t dare.

This clearly is a continuation of the MAD doctrine, that is, we deliberately leave our people defenseless, essentially – it can be argued – as a dare to someone to try something.

Let’s look at some of the implications of this advice to the President and to the American people.

Assuming that some sort of U.S. preemption would first be attempted, which is not made clear here but has been argued elsewhere, it would mean that the United States would need a global 24-hour-monitoring system that could first detect the preparation for a launch (very difficult to intercept) and then to move swiftly enough to kill a missile before it is launched, a feat even more technologically complicated than anything proposed for the kind of missile defenses that we have been discussing – so that these retired generals and admirals, if they do also have preemption in mind, are seemingly contradicting themselves, leaving the impression, rightly or wrongly, that while we may actually have the technology, it should not be used to defend the people of New York or of the rest of the nation.

Further, their adherence to MAD is evident in the very clear implication that should we fail to preempt such a strike – thereby perhaps resulting in the deaths of some two or three million Americans – we will then subject the aggressor to “annihilation.” This is MAD Cold-War-style that suggests a longstanding political bias against missile defense.

Two other points bear mention. Some of our enemies actively seek their own deaths, not only in killing the Infidels but to achieve eternal paradise. It is unlikely that the threat to annihilate them will act as much of a deterrent. Indeed, annihilation could prove to be an incentive, as in: Go ahead, make my day!

Finally, with respect to the retired generals and admirals, this stark reality: Even if we had the most sophisticated global command system imaginable, it would be virtually impossible to detect and prevent a covert planned strike from either a land-based mobile missile launcher (and there are many of them hidden all over the Eurasian landmass) or from the camouflaged deck of a freighter or from a submarine – all of which can move largely undetected to strike at will. These mobile platforms are the 21st Century mass destruction weapons of choice.

They can be readied to fire too quickly for a preemptive response. You can only get them in flight before they hit you – which is what missile defense is all about.

Besides, how do you annihilate a population if you might not know for sure whose submarine it is or who exactly arranged for the freighter or how to pinpoint the state sponsor and/or terrorist group who fires the mobile missile and then vanishes into the porous reaches of Eurasia? What president will order up a multimillion-casualty strike under those conditions?

Wouldn’t it be better to have missile defense, which harms no one, as the first line of defense, rather than incinerating someone else’s society as our first line of defense?

Perhaps the most compelling evidence that purposeful population vulnerably continues as part of our security culture can be found in our current relationships with both Russia and China, who remain exempt from, and thus, out of the reach of any missile defense efforts the U.S. Government may be taking to defend its own people.
In other words, the offensive nuclear weapons of Russia and China are off limits to any defense efforts we ultimately build – deliberately keeping our population defenseless against them, as the following statements attest.

First, from late in the Clinton years, here is a rundown of some of the “Talking Points” used by a high administration official in his Moscow discussions, reportedly first leaked to the public by the Bulletin of Atomic Scientists, circa 1999:

... The U.S. NMD [national missile defense] system would not be directed against Russia and would not weaken Russia’s strategic deterrent potential. ... Both [nations] now possess and, as before, will possess under the terms of any of the possible future arms reduction agreements, large, diversified, viable arsenals of strategic offensive weapons ... These strategic offensive forces give each side the certain ability to carry out an annihilating counterattack on the other side regardless of the conditions under which the war began. ... This is not “old hat.” The policy still is in place a decade later, with the Bush Administration’s reassurances even more publicly proclaimed to include not just the Russian Federation but China as well, this as reported in a major Australian newspaper, The Australian, on February 10, 2004:

... The frank insights into the U.S. plans to develop a missile shield over the US came in a briefing with senior US officials who are visiting Canberra. US State Department Bureau of Arms Control senior advisor for missile defense Kerry Kartchner [after discussing U.S. restricted missile defense plans against only rogue states] ... said China and Russia were the only powers that could trigger an “offensive-defensive” arms race. (But) we have taken steps in both cases to assure China and Russia that the limited modest missile defense the US plans to deploy is not aimed at them...

Then on April 16, 2004, a major American newspaper gave editorial support to this pledge to keep Americans – and other friendly nations – defenseless against the weapons of China, but warned against the U.S. and non-Communist Asian nations from going too far with this notion of a limited defense against even rogue nations, and most particularly against developing any defenses that might protect Taiwan from Chinese missiles, stating:

By pushing ahead with its plans for (limited) missile defense in Asia, the Bush administration runs the risk of creating a larger threat than the one it means to counter. The danger ... is that it would unnecessarily isolate and antagonize China ... The greatest folly is to make Taiwan part of such a system. A missile defense would be destabilizing as well as unnecessary ... And how have the Russians responded of late? Some arms controllers have maintained for 40 years that a U.S. missile defense would lead to an arms race but there has been no credible evidence to support this assumption. Quite the contrary; the opposite appears to be true, as this March 24, 2004 report from Russia Reform Monitor suggests – which contrasts sharply with the tranquil assurances given by Kerry Kartchner on behalf of the United States Government six weeks earlier, as cited above:

Defense Minister Sergei Ivanov has said Russia may revise its defense posture if NATO retains its “offensive military doctrine,” Interfax reports. ... Ivanov warned that because [Russia’s interests could be threatened] it cannot be ruled out that Russia will turn nuclear weapons “back into a real military tool.” He also wrote that Russia’s interests and commitments to its allies might require the “preventive use of force.”

There is further evidence that MAD is still with us. As has been discussed, a space-based system, with layered backup, would have a global reach that could “see” an enemy launch from anywhere in the world and respond instantly through “layered defenses” – to be reasonably certain of destroying the incoming warhead (actually, up to 200 warheads could be handled with an efficiently designed program).

Such a system obviously would put an end to the current situation of holding our people hostage to certain parts of the world. It would end the doctrine of MAD and with it replace the culture of what we can’t do to defend ourselves with a culture of what we can do to defend ourselves. Early in the Bush Administration, this prospect was at least discussed in favorable terms, though no really definitive actions were taken to restart our efforts regarding a space-based system.

The following statement as reported in the April 2, 2004 Missile Defense Briefing Report explains itself:

Space-based capabilities are not on the American agenda for the near future, according to the Pentagon’s top missile defense official [speaking before a missile defense conference on March 22] ... Missile Defense Agency (MDA) director Lieut-Gen. Ronald Kadish said that the contemporary ballistic missile threat does not currently warrant a space-based anti-missile capability ... From the standpoint of threats we face ... we don’t need to put weapons in space....

So, what is to be done? It is pretty clear that our government continues a policy of selective hostage-holding. It is a policy of deliberate vulnerability that has neither been officially proclaimed nor even discussed in any meaningful way with the American people.

It is a policy that must be brought out into the full light of day to be examined openly and candidly by the people of the State of New York and of the rest of the nation. This can be done by asking ourselves, as citizens, and, most pointedly, also asking our political leaders – elected and pretenders alike – this one critical question:

Should it be the policy of the United States Government deliberately to hold its own citizens hostage or otherwise
The answer is vital to our future. If we choose to hold ourselves, our families, our friends, our neighbors deliberately defenseless to someone else’s weapons, then it should be publicly recognized as a conscious American decision and then we should be prepared to accept the consequences.

If we choose not – then we will want a very good missile defense. But this will not become a reality until this very large question is answered with a resounding negative.

And for those who are against missile defense for New York and other states, there’s a question for them: Why do you not want to defend us from a missile attack? What is it that makes you so terribly hostile to the idea?

However all of these questions may be answered – or even if they are never asked because people don’t care all that much – whatever – Americans will get their missile defense.

The question here is when? Will it be before the fact – or after the fact, where some estimates calculate a huge loss of life and extreme infrastructural damage that could occur.9

Will there be, at some point, another sort of 9/11 inquiry? Let us hope not.

So it is that our Resolution not only calls for a responsible missile defense but it helps to set the stage with what surely should become a hugely important public discussion.

So that, whatever may be written or said in the future about whether or not the people of New York and elsewhere across America choose to defend themselves against ballistic missile attack – it will not be the that “The people were never told.”

End Notes
1 The Tomahawk sea-launched cruise missile (sometimes referred to as the Tomahawk Land Attack Missile or TLAM) currently in the U.S. inventory has an accuracy level of 10 meters or less (30 feet) with a range of 600 nautical miles for land attack missions. It can carry a 1000 pound conventional warhead or in some configurations, combined effects bomblets. ALSO: The Tactical Tomahawk would add the capability to reprogram the missile while in-flight to strike any of 15 preprogrammed alternate targets or redirect the missile to any Global Positioning System (GPS) target coordinates. It also would be able to loiter over a target area for some hours, and with its on-board TV camera, would allow the warfighting commanders to assess battle damage of the target, and, if necessary redirect the missile to any other target. Tactical Tomahawk would permit mission planning aboard cruisers, destroyers and attack submarines for quick reaction GPS missions. If approved by Congress, the next generation of long-range Tomahawk cruise missiles would cost less than $575,000 each. The cost savings and increased capability comes from eliminating many older internal systems and components built into the model currently in the Navy Fleet. In addition, streamlined production techniques and modular components would combine to lower the cost.
2 For details concerning the history of MAD and the ABM Treaty, see “Discussion Points on Missile Defense For The Homeland, Friends And Allies,” prepared for the State Legislature of New Hampshire Hearings on Missile Defense, submitted 8 January 2002. FURTHER NOTE: Beginning in the mid-1950s, the U.S. was actively engaged in missile defense development that used small nuclear warheads to be exploded near an incoming enemy nuclear missile. Known as the NIKE, Sentinel and Safeguard systems, they were in varying stages of development through to the advent of the ABM Treaty “that would make the development of such defenses impossible…[Even if in that day] Sentinel had been deployed or Safeguard’s operation continued, either would have provided adequate protection against the threats experienced up to the present, short of those [thousands of warheads] from the Soviet Union.” FROM: Dr. Gregory H. Canavan, Senior Fellow and Science Advisor at Los Alamos National Laboratory Missile Defense For The 21st Century (Draft), Ballistic Missile Defense Technical Studies Series, The Heritage Foundation, 2003, 20.
4 From: “Documentation, ABM Treaty ‘Talking Points,’ NMD Protocol: Topics for Discussion,” Comparative Strategy, An International Journal, Vol.19, No.4, 2000, 361, 364, 365. Verified as those of John D. Holm, who on August 7, 2000 became Under Secretary of State for Arms Control and International Security and Senior Adviser to the President and the Secretary of State for Arms Control, Nonproliferation and Disarmament. Beginning in 1993, he was Director for the Arms Control and Disarmament Agency. This statement, particularly as highlighted by the above italicized sentence, is regarded by several recognized experts as one of the most rare and candid admissions by any senior U.S. official that the ABM Treaty was about intentional U.S. societal vulnerability to nuclear attack, and thus, official recognition of the MAD doctrine to hold Americans hostage.
7 Refer to Ambassador Henry F. Cooper’s briefings, before members of the State of New York Legislature at various times in 2003 and 2004, as well as his presentation at conference “Defending the Northeast, the Nation, and America’s Allies From Ballistic Missile Attack,” Institute for Foreign Policy Analysis, Inc., Valley Forge, PA, 28-29 June 2001.
9 One involves the Al Qaeda, or similar group, outfitting five “tramp” freighters or possibly container ships with nuclear tipped (15-kiloton, Hiroshima size) SCUD-B missiles. The number five was selected because the pattern of mounting “the mother of all” attacks, at
least on September 11, involved at minimum five commercial jets, three of which succeeded. Were such a cataclysmic event to be contemplated, it seems reasonable to assume that five vessels likely would be involved, with, say, three deployed off the East Coast (New York, Washington, Norfolk and the Atlantic fleet) and two off the West Coast (San Francisco, San Diego and the Pacific fleet). The combined death toll projected by reliable data could be as high as 3,729,000 not counting a like number of injuries, plus extreme damage to infrastructure. While not attempting here to assess the probability, it should be stressed that the capability is realistically available and, thus, deserves to be factored into homeland defense planning. Source: Scenarios Involving Various U.S. Cities Attacked by Al Qaeda Terrorists with Sea-launched SCUD Nuclear Missiles, The Institute for Foreign Policy Analysis, Inc., Cambridge, MA.
The Legacy of Brilliant Pebbles, Clementine, and Iridium for Future Space-Based Missile Defenses

Substantial contributions to this Appendix were made by Drs. Lowell Wood, Ed English, Lyn Pleasance and Arno Ledebuhr, principals in conducting the Brilliant Pebbles and Clementine programs – and also knowledgeable of Motorola’s Iridium communication satellite system, which exploited Brilliant Pebbles’ concepts.

Those who cannot remember the past are condemned to repeat it.
– George Santayana, Life of Reason

Since withdrawing from the Anti-Ballistic Missile (ABM) Treaty in 2002, the United States is no longer legally precluded from acquiring highly effective space-based interceptor defenses, moreover in a very short time-interval. The primary impediment to doing so arises from lack of political will, rather than difficult or costly technical challenges. The needed technology was developed during the Reagan and Bush-41 administrations (1984-1992), was abandoned by the Clinton administration in 1993, and has not yet been revived. At best, there have been hints that the current administration may initiate a plan to begin a “space-based testbed” in a future administration, sometime in the next decade.

Such plans often reflect a false view that space-based interceptor systems are much more complex and costly – or less “technically ready” – than ground-based defenses, which are the primary focus of ongoing missile defense programs. But that premise does not square with history, which should be reviewed from time to time to make clear that the choice for not giving the American people the benefits of space-based defenses is purely a political decision – made quite deliberately by the past two administrations, indicating the bipartisan nature of the political aversion to building effective space-based defenses.

Current missile defense programs are often traced to the Strategic Defense Initiative (SDI), launched by President Ronald Reagan in his March 23, 1983 speech and the Strategic Defense Initiative Organization (SDIO) formed in April 1984. But, while many SDI programs indeed have descendants in ongoing missile defense programs, notably missing since 1993 is any serious effort to consider space-based defenses, which were previously crucially important – literally, primal – to the overall layered defense architecture.\(^1\) In particular, as discussed below, space-based interceptors were easily the most innovative, most mature, cost-effective defense system to result from the $30 billion invested in the SDI during the Reagan and Bush-41 administrations.\(^2\)

The following discussion briefly traces the evolution of space-based interceptors during the SDI era and relevant technology demonstrations through the mid-1990s, when all the needed technologies were demonstrated such that there can be little objective doubt of the SDI claims for space-based interceptor systems. Since then, technology outside of Department of Defense (DoD) missile defense programs has advanced several generations, so great confidence can be placed in building and deploying a highly-effective space-based defense within 5 years for $5-10 billion, as soon as it is politically correct to initiate such development.

Prelude – Smart Rocks. By 1986, the SDIO and its contractors had developed a kinetic energy Space-Based Interceptor (SBI) defensive system concept involving a few thousand more-or-less conventional guided missiles housed in several hundred large platforms deployed in low-earth orbit, supported by an extensive distributed command-and-control infrastructure, including a multiplicity of observation and

1 Considered were all basing modes and both directed energy (e.g., beams of electromagnetic radiation of various types and several different ‘flavors’ of particles beams) and kinetic energy defenses (e.g., explosively-fragmenting warheads carried by ground-to-air interceptor-rockets and ‘hit-to-kill’ vehicles which acted by merely ‘driving into’ attacking missiles and warheads). President Reagan instructed the DoD not to use “volume” attack-negation means that might require use of nuclear warheads of any type, a basic point often obscured or denied outright in revisionist or poorly-informed histories.

2 See Appendix C for a definitive discussion of the history justifying the claim that, in 1993, SDI technology for space-based interceptors was more mature than that for ground-based interceptors.
communications systems based in part on constellations of earth-orbiting platforms. Because this defensive architecture contemplated interdiction of the flight of a large ballistic missile by arranging an extremely high-speed collision between it and a much smaller interceptor-missile in which the destructive military objective is accomplished only by the kinetic energy of the arranged collision, this system was nicknamed “Smart Rocks,” with the computer- and sensor-bearing (and thus “smart”) ‘rocks’ being ‘thrown’ by the defense into the paths of the far larger missiles launched toward distant targets by the offense.

However, as the program evolved and the “Smart Rocks” design was elaborated and its projected performance analyzed, increasing concern arose as to the economic cost, the military effectiveness and the vulnerability of such a system - i.e., the degrees of its fundamental compliance with the “cost-effectiveness-at-the-margin” criteria first enunciated by Ambassador Paul Nitze, then mandated by President Reagan in Executive Order and finally codified in statute. The system, whose cost was estimated by DoD to be approximately $120 billion, seemed likely to offer only quite limited defensive efficacy – and was assessed by teams of DoD experts to be relatively “fragile” in terms of its ability to cope with likely countermeasures by the offense.

The Advent of Brilliant Pebbles. In September 1986, an alternative approach was demanded privately by the Missile Defense Caucus in the Congress, a demand endorsed the evening of the same day by a majority of the Committee on the Present Danger, presented to the president privately the following day, and immediately endorsed by him. One such alternative was offered in 1987 and its development commenced in cloistered circumstances at the Lawrence Livermore National Laboratory (LLNL); this alternative surfaced publicly in late 1988, following President Reagan’s veto of the Defense Authorization Act (because it would suppress SDIO’s spending on space-based interceptors) and after initiation of a series of DoD and presidential reviews.

This new defensive architecture consisted of an earth-orbiting constellation of a few thousand individual interceptors, each housed in its own support spacecraft. Each interceptor-spacecraft combination would have the entire on-board capability to detect ballistic missile launches and thereafter to track the flight of the missile’s booster-rocket and, if directed, swiftly change its orbital parameters to intercept the booster or its warhead at ultra-high speed, converting both into incandescent vapor high in space, due to their mutual kinetic energy alone.

Appendix D gives an informative review of the rise and fall of the Brilliant Pebbles program from the perspective of the Missile Defense Agency’s historian.

Brilliant Pebbles Component and Subsystem Mass Design Goals

<table>
<thead>
<tr>
<th>Component/Subsystem</th>
<th>Mass (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star Tracker</td>
<td>30</td>
</tr>
<tr>
<td>UV/Vis</td>
<td>67</td>
</tr>
<tr>
<td>IR Tracker</td>
<td>225</td>
</tr>
<tr>
<td>LIDAR Receiver</td>
<td>280</td>
</tr>
<tr>
<td>Laser Transmitter</td>
<td>130</td>
</tr>
<tr>
<td>Processor</td>
<td>160</td>
</tr>
<tr>
<td>Processor Shield</td>
<td>60</td>
</tr>
<tr>
<td>Power System Battery</td>
<td>80</td>
</tr>
<tr>
<td>Power System Elec.</td>
<td>50</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>18</td>
</tr>
<tr>
<td>Payload Total</td>
<td>1265</td>
</tr>
</tbody>
</table>

KKY Payload:

<table>
<thead>
<tr>
<th>Component</th>
<th>Mass (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star Tracker</td>
<td>85</td>
</tr>
<tr>
<td>UV/Vis</td>
<td>152</td>
</tr>
<tr>
<td>IR Tracker</td>
<td>225</td>
</tr>
<tr>
<td>LIDAR Receiver</td>
<td>280</td>
</tr>
<tr>
<td>Laser Transmitter</td>
<td>130</td>
</tr>
<tr>
<td>Processor</td>
<td>160</td>
</tr>
<tr>
<td>Processor Shield</td>
<td>60</td>
</tr>
<tr>
<td>Power System Battery</td>
<td>80</td>
</tr>
<tr>
<td>Power System Elec.</td>
<td>50</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>18</td>
</tr>
<tr>
<td>Payload Total</td>
<td>1265</td>
</tr>
</tbody>
</table>

BP KKV Dry Mass: 2.843 kg

Propellant Mass: 6.000 kg

BP KKV Wet Mass: 8.843 kg

\[\Delta V > 2.5 \text{ km/s} \]

Burnout Acceleration: >9-g
Various intrinsic and optional features permitted this constellation to be entirely autonomous in its defensive operations, i.e., independent of all other U.S. capabilities. Indeed, each spacecraft could be made autonomous upon command. These features – crucial to the robustness of the defensive system in plausible military circumstances (indeed, in specific ones whose plausibility had been asserted in private by representatives of the Soviet government) – necessitated far more capable computers, sensors, communications, and rocket-propulsion than had been expressed in the baseline designs of “Smart Rock” defenses.

Very importantly, the desired system cost and performance dictated that the individual elements of interceptors be of light weight, small size, and low price; i.e., they must be derived from the most modern technologies commercially supported, most of whose figures-of-merit had been advancing exponentially in time. Extended intervals of R&D to ‘reach’ for the technically-unavailable or reliance on proprietary technologies of likely-high price or questionable source-reliability were precluded by program “ground rules.” In addition to its emphasis on the use of the highest-performance technologies reliably available from anywhere, the system was distinguished by its intensive “mass discipline” – its intolerance of inclusion of non-essential mass anywhere – and its frank appeal to the characteristic economies of mass production to achieve the cost goals of the underlying defensive architecture. The small size and high performance estimates of this system relative to those of its immediate “Smart Rocks” ancestor naturally elicited the nickname of Brilliant Pebbles.

Before DoD formally adopted Brilliant Pebbles (BP) into the Strategic Defense System (SDS) architecture as the Global Defense Segment thereof – and simultaneously designated it as the “most technologically mature” and “first to deploy” of all of the component Segments of the Strategic Defense System in March 1990, it “scrubbed” all aspects of the proposed system very intensively throughout most of 1989, responding in part to a classified ad hoc Presidential Decision Directive signed by President George H.W. Bush in June 1989. This highly multi-faceted scrubbing resulted in changes throughout the technical designs, architecture, and software of the previously-proposed Brilliant Pebbles, usually in the direction of adding new capabilities or augmenting existing ones.

5 In particular, no other space-based or ground-based sensor system was required to support Brilliant Pebbles. Further, it could replace SBIRS-High and SBIRS-Low/STSS in providing tactical warning and attack assessment data, as well as the surveillance and tracking information to terrestrially-based, components of a layered defense.

6 Indeed, the concept of an air-to-air interceptor missile that was ‘jacketed’ to be able to fly in earth orbit for an indefinitely long interval was one empirically determined to be highly congenial to both officials and uniformed officers in DoD, as the favorable characteristics of such missiles – including their costs, performances and service-lives – were widely appreciated.

7 The most design-stressing requirement was that each warhead ‘counted’ as successfully defeated would have to be negated by two separated dispatched pebbles, each of which had a conservatively-evaluated probability-of-kill \(P \) of 0.9, so that the compounded \(P \) of the two pebbles defending-in-concert was conservatively rated as 0.99. The statistical ‘leakage’ of warheads assigned to the baseline pebbles defensive constellation in a worst-case (short range; no warning; salvo-launched) attack on the United States thus amounted to roughly one single warhead.

Key 1989 Red Team Contributions. Arguably the single most significant of the nine major pebbles reviews during 1989 was the one performed by DoD’s dedicated ‘Red Team,’ which critiqued the pebbles baseline design from the vantage-point of a “robust Soviet Union in 2010.” Until this review, the basic pebbles concept was that of an exceedingly capable air-to-air interceptor missile, housed inside of an absolutely minimal “life jacket” which decoupled it from the space environment for an interval of 1-2 decades, maintaining it in condition to be called upon at any time to perform its military mission of defeating a ballistic missile in the early phases of its flight – and to employ its sensors to detect the launch of such missiles.

The Red Team burdened this paradigm with a hypothetical year-2010 operational environment in which pebbles would face a variety of simultaneously-imposed, highly robust countermeasures for many hours before an all-out intercontinental ballistic missile (ICBM) attack – and then would be required to operate in the face of these countermeasures throughout every moment of their defensive operations. Substantial modifications of pebbles design – including some growth of mass and dollar budgets and additional (e.g., underground nuclear) testing – ensued; however, a manifestly highly robust design resulted. At the same time, all provisional pebbles capabilities not found to be required by the performance demands of the Red Team were deleted without exception, in the process of specifying the design and features of the “Government Brilliant Pebble” in later 1989.

Key 1990 Brilliant Pebble Features. The figure above lists the mass of the various components of the 1990-vintage LLNL version of a Brilliant Pebble, as incorporated into the Global Protection Against Limited Strikes (GPALS) architecture formally adopted by the Bush-41 administration. The objective of this space component of the GPALS architecture, which employed 1000 pebbles in low-earth orbit, was to provide high confidence in destroying a major percent...
age (well over half) of 200 warheads that might be abruptly launched from anywhere in the world at the United States or its overseas troops and allies (the remainder of the 200 warheads was assigned to ground-based elements of the layered GPALS architecture). This Brilliant Pebbles constellation, then expected to comprise a quarter of the total GPALS defensive system cost, was to be given multiple intercept opportunities against ballistic missiles in all phases of flight – boost, midcourse and high-endoatmospheric – making it a layered defense against even medium and short-range ballistic missiles world-wide.\(^8\)

After the GPALS architecture was adopted, SDIO invited industry to compete to manage the Brilliant Pebbles Demonstration-Validation (DemVal) program intended to design for deployment a 1000 pebble constellation (with logistics costed to support replacing each pebble once during a 20-year period). Two teams were selected – ones led by Martin Marietta and another by an ad hoc TRW-Hughes co-cap taincy – and SDIO proceeded to begin a competitive formal acquisition program. The two specific designs differed in detail, but not in substance, with the baseline LLNL concept summarized here. Both teams were confident that they could build an operational system within an $11 billion (FY 1989 dollars) 20-year total life-cycle cost estimate, approved by the DoD Cost Analysis Improvement Group (CAIG) as a part of the Defense Acquisition Board Milestone I reviews. Indeed, they offered firm, fixed-price contract proposals to deliver as-specified pebbles in earth orbit to the government, which were accepted.

The Brilliant Pebbles Program conducted seven flight tests – three orbital and four sub-orbital ones – and developed an extensive capability for integrated system testing on the ground, including tethered flight-tests. Unfortunately, the last test of a highly optimized “pebble” that had passed all ground qualifications failed when the Minuteman launch vehicle had to be destroyed before releasing the pebble. The DoD decision to invest in the development programs of the two selected DemVal teams meant that the prototype hit-to-kill vehicle would not be fully “battle” tested.

Although these tests were not always completely successful, they provided an impressive data base to support the formal development process and provided many useful insights into key phenomena important to dealing with potential countermeasures and indeed to demonstrating latent unanticipated capabilities. For example, one intercept failure due to a faulty target warhead nevertheless demonstrated the pebbles’ unanticipated capability to track and close on a reentering warhead in the earth’s upper atmosphere. The program also participated in a major manner in three underground nuclear weaponry effects tests at the Nevada Test Site, validating the designed-in hardness against key nuclear weaponry effects of various pebbles components and technologies.\(^9\) Concurrent testing of pebbles components against other types of threats to its effectiveness – e.g., laser and microwave beams, “engineered space debris,” etc. – also took place at various specialized DoD test facilities.

There are many differences between this “Vintage 1990 Pebble” and the hit-to-kill interceptor vehicles of the present-day missile defense systems, none of which are space-based. In addition to being much smaller and of far lower mass (by roughly 5-fold) than present-day interceptor kill vehicles, pebble requirements led to many more capabilities – e.g., in the population and performance levels of its active and passive sensors, and in its computer control and propulsion sub-systems – to intercept with high reliability highly-capable ICBMs and their components, as well as to assure

\(^8\) However, for defensive effectiveness scoring purposes, only pebbles operations in boost-and-bussing phases were “counted.” Pebbles effectiveness in midcourse and high-endoatmospheric defensive operations was formally regarded as “purely bonus” in nature.

\(^9\) These were the last U.S. missile defense components exposed to a nuclear weaponry effects testing environment.
The Decline of Brilliant Pebbles and the Rise of Clementine. This the most cost-effective and mature program of the major components of GPALS architecture was curtailed by Congress in 1992 and eliminated by the Clinton administration in 1993 – but not for technical or management reasons. As explicitly noted in an April 1994 report by the DoD Inspector General, this fully-approved, Major Defense Acquisition Program – the SDI’s first – had been managed “efficiently and cost-effectively within funding constraints imposed by Congress” and the termination of key contracts “was not a reflection on the quality of program management.”

Indeed, it was a purely political decision – anticipated by SDIO management in the last year of the Bush-41 administration. When the 1992 Defense Authorization Act directed the SDIO to reduce Brilliant Pebbles’ status from a fully approved Major Defense Acquisition Program to a technology demonstration program, SDIO recognized the lethality of this political resistance to developing space-based defenses should there be a change of administrations in 1992, and sought a politically viable “hedge” program to prove key pebbles technologies. These considerations led to a program to send a spacecraft using pebbles’ technology so far away from the earth before its capabilities were exercised that there would be no concern that key components and performance characteristics of a counter-ICBM system were somehow being exercised in space.

A specific proposal to conduct such a demonstration was approved by SDIO in April 1992, and its flight commenced twenty-one months later, in January 1994. This test-flight was to return to the moon and use the pebbles’ sensor suite to map its surface during several lunar orbits, then to “slingshot” by the Earth into an orbit around the sun while passing close to a deep space asteroid – and thereafter be “lost and gone forever.” Aptly, this spacecraft was nicknamed Clementine, and it was the means of the last in-space tests of Brilliant Pebbles technology and capabilities.

Clementine’s implementation and mission-execution expressed a basic division of labor between the Naval Research Laboratory (NRL) and LLNL, where the Brilliant Pebbles concept originated. NRL built the Clementine spacecraft, integrating into it then-state-of-the-art technologies useful
Motorola's Iridium Global Communication System –
An Example of a Distributed Constellation

Iridium Constellation 6 rings x 11 platforms

Iridium Cell Phone RF Footprints

Most notably, Clementine space-qualified all Brilliant Pebbles technology except for the light-weight miniature propulsion system – and that capability was demonstrated on an Astrid flight test in 1994.\(^\text{15}\)

Astrid Demonstrated Pebbles Miniature Propulsion. The Astrid flight-test series employed a 21 kg fully fueled ground-launched rocket using 3rd generation Brilliant Pebbles propulsion hardware. A lightweight titanium propellant tank formed the vehicle structure and a re-configured BP propulsion system was constructed to support the simultaneous thrusting of four axial thrusters. Fast liquid valves using warm pilot gas were used to control the four thrusters. The lightweight hardware shown above is similar to other key Brilliant Pebbles component masses shown on page i62. This experiment used a four cylinder “quad” pump assembly with twice the number of pump cylinders used in the Brilliant Pebbles design.

The final Astrid flight-test experiment successfully demonstrated all the key subsystems needed for a Brilliant Pebbles propulsion system. Warm gas thrusters and lightweight piston-tanks-as-structure had previously been tested separately,\(^\text{16}\) so this experiment validated that a boot-strapping, on-demand propulsion system was flight-feasible and

13 The baseline pebbles sensors were designed for use over multi-minute intervals in the near-earth environment, during flyout from the pebbles “life jacket” to the ICBM being intercepted; in marked contrast, Clementine’s assigned main task was the high-resolution, spectrally-resolved mapping of the moon over a multi-month interval. Unsurprisingly, lunar features of greatest interest had different spectral characteristics than those of ballistic missile rockets-in-flight, so that cameras’ spectral filters had to be changed, and thermal characteristics of some of the Brilliant Pebbles battle-cameras had to be adapted to the circum-lunar orbital environment.

14 The Committee on Planetary and Lunar Exploration of the Space Studies Board of the National Research Council published in 1997 a detailed discussion of this path-setting mission in its Lessons Learned from The Clementine Mission. This review contained many references to novel Clementine data, much of which was published in a 1994 issue of the AAAS's prestigious journal, Science, Vol. 266, cover-dedicated to the Clementine mission.

or essential for high-performance space-based interceptors. LLNL provided a version of the Brilliant Pebbles sensors and control computer system adapted for long-term use in the deep space environment and modified to accommodate the science goals of the Clementine mission. The figure above indicates the Clementine sensor suite was somewhat heavier than the Brilliant Pebbles sensor suite to accommodate different and to some degree more demanding conditions of the extended Clementine space mission.\(^\text{13}\) Though heavier than pebbles, the mass of the more extensive sensor suite still compares very favorably to the far lower-performance ones of the kill vehicles of current missile defense systems.

Remarkably severe budgetary stringencies and the unprecedentedly fast pace of the Clementine mission compelled creation of spacecraft-controlling software throughout virtually all of the mission, with required software often delivered to the spacecraft mere days before its mission-critical use – another Clementine “first”. This unique “just in time” mode of software delivery worked spectacularly well for the first 7 months of the remarkably-complex mission, but resulted in a crucial failure after the main portion of the mission – the lunar mapping – had been completed, just before the asteroid ‘near-miss’ could be attempted.

The Clementine spacecraft is presently in circumsolar orbit, and was operational when contacted most recently by the National Aeronautics and Space Administration’s (NASA) Deep Space Network, more than a year after mission-termination. In recognition of its many unique features and singular accomplishments, Clementine’s flight-back-up spacecraft is on permanent display in the Lunar Alcove of the National Air and Space Museum.\(^\text{14}\)
performed according to expectations. This effort complemented prior development work that was carried out in rocket vendor test cells and at LLNL and represented an end-to-end validation of the miniaturized reciprocating pump concept. This Astrid vehicle is believed to be a world record-holder in flight-demonstrated change in velocity (Δv) for this size and mass. This flight experiment demonstrated the validity of the Brilliant Pebbles Divert and Attitude Control System (DACS) mass budget.

The Death of Clementine – and of Innovative Space-Based Interceptor Technology. With the award-winning publication of the scientific fruits of the Clementine mission early in 1994–5, it seemed reasonable to expect that DoD would permit follow-on work to proceed toward realization of a set of advanced technologies useful in a wide variety of DoD spacecraft. However, President Clinton employed his short-lived line-item veto to de-fund all Clementine follow-on work – Congressionally ‘earmarked’ funding had kept the program proceeding at a minimal level on a year-by-year basis up until that point – with the cognizant White House staffer proclaiming to a press conference that this represented the final termination of the Brilliant Pebbles program.\footnote{The remarkably small but very talented Clementine team had won both individual and group awards for NASA and the National Academy of Science for their unique contributions – and the scientific community was very supportive of a follow-on mission intending to use even more advanced commercially-available technology to fly-by a deep-space asteroid, competing that portion of the original Clementine mission. In the White House press briefing, the president’s aide indicated that the president’s veto was because this mission would use “Star Wars” technology and might violate the ABM Treaty.}

When the line-item veto was overturned by a Supreme Court decision, the Clinton administration’s Air Force officials proceeded to re-program the Congressionally-earmarked funds to other purposes, and Clementine died – and so ended the Pentagon’s deliberate efforts to advance key technology that would support effective space-based defenses.

Iridium Validated Brilliant Pebbles Operational Concepts. Clementine and Astrid demonstrated the space-worthiness of all the 1990-vintage technology needed to build and operate the Brilliant Pebbles spacecraft – one at a time. But aspects of building, deploying, and operating a Brilliant Pebbles system of 1000 spacecraft remained controversial – and key to proving the viability of an effective space-based interceptor system.

For instance, DoD has never mass-produced spacecraft (remember the system concept called for 1000 essentially-autonomous pebbles to be operated by a very small officer-cadre), nor launched satellites in quantity or at high rates – nor had anyone else in the world with the exception of the Soviets. Furthermore, the U.S. practice had been to “body-wrap” each of its operational military spacecraft, enveloping each one with an average of not much less than 100 (military+civilian-contractor) operational personnel, and it was widely asserted that this was a prerequisite for spacecraft mission-performance up to DoD specifications. SDIO understood that a new way of building, deploying and operating spacecraft was required to achieve the Brilliant Pebbles system goal – and built the development of such innovative attributes into its DemVal program. These key aspirations and programmatic initiatives also died with the Brilliant Pebbles and Clementine programs.

Nevertheless, these concerns were also laid to rest in the 1990s by a Motorola-led consortium, with its manufacture, launch-integration, launch, orbital deployment and subsequent operation of the Iridium worldwide satellite cellular telephony-supporting constellation. Iridium built and launched a constellation of 95 mid-sized (800 kg each – over 10 times more mass than the 50 kg pebble) spacecraft between May 1997 and November 1998, at a peak build-rate of 4 spacecraft-per-week, employing 19 launchers from a wide variety of American and foreign space-launch service-suppliers.\footnote{The difference in per-pound cost of Iridium and pebbles vanishes entirely when account is taken of the fact that Iridium spacecraft carried relatively little propellant, whereas pebbles were ‘rich’ in low-cost propellant. Indeed, the ‘dry mass’ of pebbles in constant-value dollars was greater than that of Iridium.}

Spacecraft quality has been operationally demonstrated to be exceptionally high – only 2 of the launched 95 failed in the first half-dozen years of operation, an in-service mortality rate unrivalled in mass-produced spacecraft of all types and origins. As illustrated on the previous page, the Iridium constellation provided world-wide coverage for communications via handheld cellphones and pagers.

The documented marginal unit cost of these spacecraft was less than $10 million, comparable to (though 50-percent higher than) the meticulously-prepared Bush-41 pebble cost-estimates on a “per-pound” basis (the actual per-pound marginal cost of an Iridium satellite in 1997 was <$12 K/kg, and the projected per-pound marginal cost of a pebble in 1990 was ~$8 K/kg).\footnote{Thus, the documented mass-weighted spacecraft build-rate and the total spacecraft mass-on-orbit for the Iridium constellation were substantially greater than that contemplated by the SDI program for the GPALS Brilliant Pebbles constellation.} Moreover, the peak build-rate of these much larger spacecraft was spacecraft-mass-comparable to that planned for Brilliant Pebbles by the Bush-41 DoD. The total cost for developing and deploying the 66-satellite operational constellation within a half-decade interval was about $5 billion, all paid for by the private investment community.

...
Quite importantly, the entire Iridium constellation, in full commercial operation, is operated by a ground-crew of fewer than ten people, implicitly validating the pebbles estimate of a required ground crew of the same magnitude – versus the thousands of personnel postulated by traditional rules-of-thumb.

Just as Clementine demonstrated that a first-of-a-kind, very high-performance deep space mission can be controlled by a mission control center crew of typically two people (in marked contrast to the many dozens of staff characteristic of NASA missions of comparable complexity), Iridium established that complex operations of large constellations of sophisticated spacecraft can be controlled, year-after-year through the present day, by a literal handful of staff supported by highly automated expert system control software.

Iridium, though an economic disaster for its initial investors, has been an outstanding technological success, and its current commercial operation is cash-flow-positive. Quite importantly in the present context, the creation and operation of Iridium has provided complete, essentially quantitative validation of several of the key economic, logistics and operational postulates of the Brilliant Pebbles ballistic missile defense architecture.

When combined with the legacy of Clementine and A-stard, Iridium demonstrates that there cannot be any rational controversy regarding any of the major technical issues to be addressed in building a cost-effective effective space-based interceptor system.

Aftermath. When the United States exercised its Article XIV rights and withdrew from the ABM Treaty in June 2002, it ended the only legal impediment to unilateral deployment of space-based means from defending against ballistic missile attacks, e.g., with a modernized form of Brilliant Pebbles. Nevertheless, the “outside-the-Treaty” action taken by the Bush-43 administration have thus far been only to commence to build far less effective and more costly ground-based missile interceptors in Alaska (rather than in the Treaty-licensed location of Grand Forks, North Dakota) – supplemented with sea-based radar and forward-deployed interceptors on Navy ships.

For all intents and purposes, U.S. development of lightweight space technology ceased with the cancellation of the GPALS Program in 1993. Several component vendors attempted to develop commercial products based on the pebbles designs and offered them to the spacecraft industry, OCA, for example, built a version of the Pebbles Star Tracker, which was flown on Mars 98 and Stardust missions. But interest in lightweight systems and components waned, and OCA no longer exists. Until recently, lightweight propulsion systems were still under development at LLNL – but the Pentagon recently abandoned this last remnant of the Brilliant Pebbles effort.

With applications mostly outside of the United States, lightweight inertial measurement unit (IMU) development has continued, infrared sensors and coolers have improved significantly and most importantly, digital electronic systems have improved by more than 100-fold, as Moore’s Law would indicate. The Danish company Terma offers a Wide Field of View Star Tracker. As discussed in Appendix B, the University of Surrey in Great Britain has been the leading proponent for lightweight space systems and has flown many lightweight systems using technology basically similar to and in some cases performance-comparable to the Brilliant Pebbles and Clementine technology-set. The People’s Republic of China appears to have embraced the idea of lightweight, high performance space systems, with Surrey aid.

It is more than a little ironic that, at a time when the United States is growing increasingly concerned about proliferation of technology which could adversely affect our security and with nominally-growing interest in space-based systems, to find that capabilities pioneered by this country are now owned and exploited by foreign interests. It is clear, however, that given the capabilities of American industry, and a concerted effort similar to that invested in the BP program, American leadership and effective dominance over this area of technology can be re-established.

Future Prospects for Space-Based Interceptors. However, the Bush-43 administration hasn’t chosen to revive 15-year-old designs to support building viable space-based defenses. Those sensor-satellite programs that support the ground-based missile defense architecture inherited from the Clinton administration have, without exception, continued to fall ever more thoroughly behind schedule (by at least two-fold, in the best case) and to run ever more over-budget (typically, by three-fold). Space-based interceptor efforts, limited to paper-study projects, have likewise slipped their purely-paper schedules – after all, no real hardware efforts have been initiated – and recently have been deferred into the effectively-indefinite future, while space-based interceptors astoundingly have been evaluated as “technologically premature.”

20 Such lightweight technology would also significantly benefit other defense programs – such as the Navy’s sea-based defenses. Lightweight kill vehicles would make feasible an interceptor that would fit into the existing Vertical Launch System (VLS) existing around the world on U.S. ships and those of our allies. This would avoid the costly development of a large interceptor – and a new VLS and supporting infrastructure for a dedicated subset of the fleet, with a substantial consequent impact on fleet operational flexibility.
All this is in striking contrast to the far more serious, Soviet-focused missile defense program of the Bush-41 administration, which planned to deploy the Brilliant Pebbles segment of its strategic defensive architecture – the Global Protection Against Limited Strikes system – starting deployment of a constellation of 1000 pebbles in 1996 and completing it in 1998. Moreover, this later-’90s deployment was to express the technology extant in 1989, and was to be highly effective against a far more formidable ICBM/submarine-launched ballistic missile threat to the American homeland – as well as to friends and allies all over the world – than that formally declared to currently exist. The total life-cycle DoD CAIG-validated cost-estimate of this Bush-41 defensive deployment, including all of its RDT&E expenses, all of its production and launch costs, all of its operational and testing costs for 20 years – plus complete replacement of the constellation (involving the orbiting of another 1000 pebbles) – was $11 billion (1990 dollars).\footnote{Brilliant Pebbles as specifically designed in 1990 couldn’t be reproduced these days, as many of the key technologies have so modernized that their 1990 versions are found only in technology museums. As would be expected from considering consumer-familiar features of the ongoing Silicon Revolution, such key pebbles technologies have become somewhat smaller, lower mass, less power-consumptive and less expensive over the 14-year interval since the pebbles design was ‘frozen’ by the Bush-41 DoD – but they typically express more than a hundred-fold improvement in performance. A modernized pebble thus would be somewhat smaller, lower-mass and less expensive than the ‘Government Pebble’ of a decade-and-a-half ago – and would offer far greater military performance in its sensing, data-processing, and communications sub-systems. The present-day total life-cycle cost of the Bush-41 pebbles GPALS missile defensive system, as then designed-and-operated, would be of the order of $16 billion (2006 dollars).}

In marked contrast to having an impressive global missile defense capability for 20 years, the 6-year RDT&E budget for the Bush-43 ballistic missile defense program (2001-2006) – including no deployment costs – is administration-stated to be roughly $50-billion as-spent dollars. A January 2006 Congressional Budget Office study estimated that the current missile defense program could cost another $2.47 billion between now and 2024.

A detached observer perhaps could be excused for some puzzlement as to the origin and nature of the differences in ballistic missile defense tastes, judgments, and directions of the Bush-41 and -43 administrations.
Missile Defense Challenges for the 21st Century

A Conference Hosted by the Claremont Institute
Dearborn, Michigan
July 25-26, 2008

Conference Director
Tom Karako

Conference Rapporteurs
Stephen Hayes
Tom Joscelyn

On September 11, 2001, a handful of senior officials from the Bush administration were in Moscow. The Americans wanted Russia’s cooperation on a variety of arms control issues, including joint missile defense efforts. The Russians were not interested, but that soon seemed like a moot point. Terrorists had just struck the greatest symbols of America’s economic and military power, and ballistic missiles were the furthest thing from most minds—except one New York Times reporter.

During a press conference held at an American hotel in Moscow just hours after the terrorist attack, the reporter pressed the Bush administration’s representatives. Given the devastation in New York and Washington, why was the Bush administration wasting time on ballistic missile defense? After all, if completely ordinary civilian aircraft can be turned into weapons of mass terror, then why should we worry about trying to stop ballistic missiles? Wasn’t missile defense a waste of time?

It was an understandable line of questioning. America had just suffered the most devastating attack on her soil since Pearl Harbor. In the years to come, her priorities would lie elsewhere. Two wars and a crackdown on terrorist cells around the world would dominate the national security discourse. And despite some admirable efforts by the Bush administration to move this nation closer to a robust missile defense capability, missile defense has become a backburner issue.

But should it be? Or have the lessons of September 11 been misapplied?

On July 25-26, 2008, the Claremont Institute hosted a major conference in Dearborn, Michigan to discuss missile defense and national security priorities in the twenty-first century. Participants and attendees included scientists, policy professionals, politicians, congressional staffers, journalists, defense specialists and concerned citizens from Michigan and surrounding states. In a series of panel discussions spanning two days they discussed the threat ballistic missiles pose to America’s security, what can be done to counter this threat, and how America can create a comprehensive ballistic missile defense (BMD) capability.

Surprisingly, many Americans do not even know that their nation is susceptible to a ballistic missile attack. It is widely assumed that the government has the capability to intercept a ballistic missile fired by one of its enemies. In reality, America has little capacity to intercept ballistic missiles targeting the civilian population. The U.S. government relies almost exclusively on its ability to deter enemies, either through the threat of military retaliation or diplomacy.

But a principal lesson of the September 11 attack is that offensive deterrence alone can be ineffective. The threat of retaliation does not work on rogue actors committed to mass destruction. An asymmetric attack like that orchestrated by al Qaeda can also leave America with no easy target against which to retaliate. And there can be little to no effective diplomacy with ideologically-motivated terrorists. The only truly effective way to stop a terrorist attack is to be proactive, disrupting terrorist plots before they can be executed and implementing defensive measures that limit terrorists’ efficacy. We have learned that we cannot wait until after a terrorist attack to prepare.

The threat of a ballistic missile attack is similar. It requires that the U.S. Government be proactive, looking for ways to stop an incoming missile before it is too late. There
are myriad ways a ballistic missile strike can be carried out on American soil. Only by taking proactive measures to stop such a strike in the first place can the U.S. government be sure its citizens are protected. But while the U.S. government has become remarkably vigilant in its attempts to stop the next terrorist attack, the same cannot be said for the threat of ballistic missile attack.

This is a threat that is growing. The devastation brought on by a successful missile attack could dwarf the catastrophic damage of September 11. It is the U.S. government’s responsibility to ensure that America’s citizens are protected against such an attack. And it is the responsibility of those citizens to demand that their representatives take action, instead of waiting to learn a costly lesson as they did in the months and years leading up to September 11.

The Claremont Institute conference made the scope of the threat America faces readily transparent. Leading figures from America’s national security establishment addressed the conference’s attendees, and all of them highlighted the threat posed by ballistic missiles. The keynote address was provided by Ambassador John Bolton. Senator Jon Kyl and Congressman Trent Franks also delivered remarks. The Claremont Institute assembled four panels of top experts, all of whom provided important insights. Throughout all of these presentations and the discussions that followed, five key themes emerged:

- The threat of ballistic missile attack is real and growing. It is not something that can be ignored.
- The increasing proliferation of nuclear and ballistic missile technology means that this threat emanates from all corners of the globe. The threat does not come solely from nations with large-scale militaries such as Russia and China, who see themselves as America’s strategic competitors. Increasingly, rogue states and unstable nations have access to technology that allows them to launch such an attack.
- A ballistic missile strike could potentially cripple the United States, causing damage that surpasses the destruction of September 11, 2001. This is not fear-mongering or hyperbole. The potential is real for a missile attack delivering a nuclear, biological, chemical, or electromagnetic pulse weapon.
- America's limited ballistic missile defense capabilities leave it vulnerable to an attack. Despite modest improvements in our capabilities in recent years, we remain largely defenseless.
- Just as Washington was complacent in the face of the terrorist threat prior to September 11, it is currently reluctant to counter the threat of a ballistic missile strike. Only public outcry on this issue can affect change.

Ambassador John Bolton on the Threat of Rogue States

Ambassador John Bolton began the conference with a sober assessment of threats facing this nation. We can be sure that every day rogue states such as Iran and North Korea inch closer to an ability to deliver weapons of mass destruction with ballistic missiles. There is, however, widespread disagreement about how to monitor and hold these nations accountable. And there certainly is no consensus in Washington that a robust BMD capability is the appropriate way to defend against this threat.

Bolton explained that the issue of BMD has an “ideologically charged significance, particularly for those who oppose it.” The Washington establishment is heavily invested in the notion of a new arms control era, one in which nations negotiate away the threat of their ballistic missile arsenals. Critics once maintained that a BMD system was incapable of hitting a bullet with a bullet, but advances in BMD technology have proved them wrong. They now argue that the increasing sophistication of offensive missiles will make it impossible for any robust BMD system to provide adequate protection.

But these assertions “are ideological arguments,” Bolton said, not matters of fact. Revisiting the themes of his book, *Surrender Is Not An Option*, Bolton argued that the era of traditional arms control is over. It is not only difficult to verify that rogue states are complying with international restrictions, they are also not honestly interested in negotiating away a capability that gives them power within their region of the world and a deterrent against any who may try to interfere in their affairs.

The Bush administration withdrew from the Anti-Ballistic Missile Treaty in 2002 amid much controversy. The administration did so because the treaty did not adequately permit the United States to deal with the emerging missile threats from rogue states. When the Bush administration’s representatives were in Moscow in September 2001, they made this argument to the Russians, Bolton told the audience. The limited defensive systems discussed with the Russians in 2001, and those deployed on a narrow basis since, are not intended to defend against a Russian or Chinese missile attack. Rather they were designed to meet the capabilities of rogue states such as Saddam’s Iraq, Iran, and North Korea. The American officials told the Russians that they wanted to work together on missile defense, including joint research projects. The Russians rejected the offer. They preferred the status quo.
Since September 11, that status quo has evolved. Surveying the threats to this nation, Ambassador Bolton explained that by putting an end to Saddam Hussein’s regime, the Bush administration eliminated one of the major threats to the U.S. and our allies. In a related development, Libya turned over its nuclear program, evidently fearing American-led reprisals for its illicit activities. Two threats have thus been removed from the international chess board.

But the remaining threats have become “more acute,” Bolton warned. He was especially critical of the Bush administration’s mishandling of rogue nations such as Iran and North Korea. Much of the focus has been on their continued pursuit of nuclear weapons, but the Bush administration and other nations have not adequately made the point that their ballistic missile capability is closely related to their nuclear programs. Both rogue nations have pushed ahead with their development of ballistic missiles, making worrisome advancements in the past eight years. Furthermore, their missiles are not designed to deliver conventional or biological warheads, leading to the reasonable conclusion that nuclear payloads must be the next step. Ambassador Bolton put it plainly: “It is clear that Iran and North Korea are interested in ballistic missiles not as an interest in physics, but as part of an offensive capability.”

It is for this reason that Iran and North Korea made up two-thirds of President Bush’s “Axis of Evil”—a phrase that Ambassador Bolton did not dismiss. These rogue states have cooperated extensively on ballistic missiles and they use this cooperation to their advantage. For example, North Korea’s October 2006 test of a nuclear warhead and repeated tests of ballistic missiles have been tremendous propaganda victories for Kim Jong Il’s repressive regime. In the wake of missile launches and a nuclear detonation North Korea has managed to extract concessions from the West, and the Bush administration in particular. (A few months after Bolton’s address, the Bush administration removed North Korea, a notorious sponsor of terrorism, from the official list of state sponsors of terrorism.)

The problem is by no means limited to North Korea. Bolton told the audience that North Korea has “intently cooperated with Iran” and gained “many of the benefits of the Iranian program,” including Russian technology.

Both North Korea and Iran appear willing to work with other rogue regimes to proliferate nuclear technology. Israel’s strike on a suspected nuclear facility inside Syria in September 2007 is suggestive of this cooperation. Coming less than one year after the North Korean test, the strike in Syria exposed the possibility of rogue-state collaboration in clandestine pursuits. Bolton called this cooperation a “critical element in the progress the rogue states have made.” Unfortunately, some prefer not to acknowledge it as such.

Bolton has long been critical of the U.S. Intelligence Community’s (“IC”) assessments of rogue states. The IC has consistently misjudged the progress rogue states have made towards acquiring weapons of mass destruction. As recently as 2003, the CIA gave public testimony downplaying Syria’s interest in WMD. The CIA argued that Syria had neither the technological capability, nor the financial resources, to pursue nuclear weapons. But the CIA’s analysts had not even considered the cooperation between regimes that made the nuclear facility on Syrian soil possible.

Together, Iran, North Korea, and Syria appear to have solved the problems the CIA thought were insurmountable. Ambassador Bolton explained that the joint venture ensured “all three countries would get something out of” the deal. Iran and North Korea were able to have a hand in a separate nuclear program, outside their own borders, where they could escape international scrutiny. Syria, for its part, received vital financial and technical assistance that would have been difficult to obtain elsewhere.

The existence of the Syrian nuclear facility suggests that the cooperation between rogue states “is more robust than expected.” It also confirms there are significant “gaps and inadequacies in our intelligence system.”

Another such gap concerns our understanding of the Iranian nuclear program. In addition to being a likely contributor to the Syrian facility, the mullahs of Iran have aggressively pursued their quest for nuclear arms. Here, again, Ambassador Bolton was highly critical of the IC’s performance. It is dangerous to assume we would have advance knowledge of every new development in missile technology or weapons of mass destruction.

In December of 2007, the IC released the key judgments from a new National Intelligence Estimate (NIE) on Iran’s nuclear program. The effect of the new NIE was to reverse the IC’s previous consensus—embodied in a NIE published in 2005—that Iran was developing a nuclear weapons capability. The 2007 NIE drastically changed the course of the debate in the U.S. concerning how best to deal with Iran’s nuclear program. Previously, it was widely accepted that Iran continued to seek a nuclear capability for military uses. But in the wake of the 2007 NIE, the press began reporting that Iran had ceased its military program. The IC implied that
Iran’s nuclear programs were for supposedly benign civilian purposes only. What had changed between 2005 and 2007? According to Bolton, not much.

Bolton pointed out that much of what was said in the key judgments from the 2007 NIE was not all that different from the 2005 NIE. But the way the 2007 key judgments were written gave the misleading but “deliberate impression” that the IC could say with confidence that Iran’s nuclear military program had been halted. That finding was deliberately intended to be released to the press, Bolton explained, and it had a “devastating, negative effect” on America’s ability to contain Iran’s nuclear ambitions. The 2007 NIE ended any chance of effective diplomacy, making it difficult if not impossible to contain Iran.

Why would the IC do such a thing? Bolton suggested the IC has biases of its own. While it has been popular for the press to report how the Bush administration has supposedly politicized intelligence to meet its policy desires, the IC has itself consistently politicized intelligence. There is no better example of this than the 2007 NIE, which immediately drew criticism from even America’s less-than-hawksish European allies.

Bolton argued that only a strong executive branch could reign in the IC. Unfortunately, President Bush decided not to play this role, allowing the IC to shape the discourse surrounding key issues of national security. Bolton commented wryly that the IC “does not act to provide press releases to the Washington Post and the New York Times,” but “to provide intelligence to the executive.” Bolton advised that until a strong executive refocuses the IC on its core mission, politicized intelligence assessments such as the 2007 NIE “will happen over and over again.”

It is unlikely that either Iran or North Korea will willingly give up their nuclear programs. It is in both of their interests to hold on to their capabilities as long as possible. For North Korea, the program helps ensure that Kim Jong Il’s corrupt regime stays in power. For the mullahs, Iran’s nuclear program provides a means to project power throughout the Middle East and lessens the ability of their enemies to respond to Iranian provocations. Just as both nations will continue working on their nuclear and ballistic missile programs, the U.S. must diligently work on its own efforts to defend against them, including the development of a robust BMD capability.

Panel One: The Ballistic Missile Threat: Strategic Competitors, Rogue States, and EMP

The first panel of the conference was chaired by Dr. Robert L. Pfaltzgraff, Jr., President of the Institute for Foreign Policy Analysis and a professor at Tufts University. Pfaltzgraff began the panel session by outlining a broad range of vulnerabilities in America’s defense, including asymmetric threats “where we would be most vulnerable.” Both states and non-state actors are looking to acquire ballistic missiles. Among state actors, America’s chief concern is with nations such as China, Russia, Iran and North Korea, all of whom have robust missile programs. The missiles they are developing “do not attempt to match U.S. systems,” but instead “are designed to exact major devastation at the expense of Cold War accuracy.”

Surveying the global landscape, Pfaltzgraff explained that there are far more possessors of ballistic missiles today than there were 20 or 30 years ago. At least one of these states, Pakistan, is unstable, with terrorists taking over portions of the country. We have to consider the possibility that terrorists could take possession of Pakistan’s nuclear arsenal. The founding father of Pakistan’s nuclear program, A.Q. Khan, oversaw a proliferation network that sold sensitive nuclear technology to countries such as Iran, Libya, and North Korea. Although the A.Q. Khan network was shuttered, Khan had “developed a very large international network, parts of which may still be operating.”

The rogue states are not our only concern. China and Russia have positioned themselves as “strategic competitors,” and both are modernizing their strategic nuclear forces. China has the most active ballistic missile program in the world. The Chinese are continually developing and testing missiles, as well as methods to counter missile defense. Pfaltzgraff said the “warning time that the U.S. might have prior to deployment is eroding.” In the absence of an American missile defense capability, nations “have a strong incentive to acquire a ballistic missile capability” because it is “relatively cheap” to develop and deploy. Rather than encouraging a costly arms race and a buildup of missile technology, effective missile defenses could dissuade rogue nations from investing in them in the first place.

In the face of all these threats, America has taken minimal steps to develop a BMD system. The Bush administration has developed a limited system in the last several years, but this system is only “designed to take account of a very small part of the threat.” In particular, the American system cannot stop an electromagnetic pulse or “EMP” attack. An electromagnetic pulse can be created by detonating a nu-
clear device at high altitudes, between 40 and 400 kilometers. When such an attack occurs, electromagnetic pulses from the detonation can disrupt all electrical devices within a given area. Depending on the size and altitude of the detonation, “a single warhead could have a cascading effect.” Reading from the 2004 report on the threat from an EMP device, Pfaltzgraff warned: “An EMP attack that disrupts the financial services industry would stop the operation of the U.S. economy.”

For a more detailed assessment of the effects of an EMP attack on American society, the panel turned to Dr. William Graham, who currently serves as the Chairman of the Congressionally mandated Commission to Assess the Threat of Electromagnetic Pulse to the United States. Graham was formerly Chief Science Advisor for President Reagan and Director of the White House Office of Science and Technology Policy. America’s national infrastructure is generally very reliable, Graham said, and all levels of our society from the military to the financial services sector depend upon it, creating an “interlinked dependency.” For the most part, the national infrastructure is composed of technologies that tend to fail individually and at a single point in time. We have developed very good ways to deal with these types of failures, Graham said. With the mass blackout of August 2003, power systems in the Northeast went down, but there was very little damage to those systems. The protective systems in place at the time prevented significant problems from developing.

An EMP attack would be very different. A nuclear warhead detonated at high altitudes would “fail many of the electronic parts of our infrastructure simultaneously,” Graham said. Not only would much of our national power grid fail, but much of our telecommunications infrastructure would also go out. Americans would be without running water for lack of electricity to operate pumps, and massive traffic jams would develop because automobiles and other vehicles would be knocked out. Air Traffic Control systems would become inoperable and we do not know the effect EMP would have on modern “fly by wire” commercial aircraft, since none have been tested to that threat. Dr. Graham said we would “quickly revert to an early nineteenth century style of country, but now supporting ten times as many people.” “Within a week or two people would start dying,” Dr. Graham said, and in hospitals, which would be without any power after their backup generators ran out of fuel, they would begin to die even sooner. Chaos could ensue as all civil authority and emergency services would be without the ability to respond.

For some in the audience, the scenario outlined by Dr. Graham sounded like a work of fiction. It is difficult to conceive of mass carnage and suffering on this scale. But the possibility of an EMP attack is not confined to novels. It has been a realistic threat for decades, Graham explained.

In the early 1960’s, the U.S. ran a series of high altitude nuclear tests above the Pacific Ocean. One of these tests, which took place on July 9, 1962, was codenamed Starfish Prime and involved the detonation of a thermonuclear device over Johnston Island. The electromagnetic pulse given off by the detonation was somewhere between 100 to 1,000 times more intense than expected, Graham said, and caused a series of unexpected failures in the Hawaiian Islands more than 1,000 miles away. At the time, scientists in the U.S. worried that the Soviet Union could launch such a warhead from its submarines and detonate it over the U.S. with little or no warning, thereby disabling our ability to respond to a full-scale attack. Thankfully, the Cold War never did develop into a nuclear-armed conflict. But the threat of an EMP attack remains.

In particular, Dr. Graham highlighted ballistic missile tests conducted by Iran, including their launch of a SCUD missile from a sea-based platform in the Caspian Sea, with detonations in the high atmosphere. These tests might seem puzzling, considering the fact that the Iranians already have very good land-based missile and test range capabilities. Dr. Graham explained that it was possible for one of our enemies to launch an EMP attack from a ship off of our coasts, making longer-range land-based missile systems unnecessary. An EMP attack makes sense from this perspective, because the post-attack forensics would be difficult. It is possible we would not “have the foggiest idea of what happened,” or even who executed the attack.

Given these threats, Dr. Graham recommended that America prepare beforehand to prevent or limit the effects of an EMP attack. A number of steps should be taken, including the deployment of a multi-layered missile defense system utilizing a variety of technologies. Ensuring the uncertainty of an EMP attack is particularly important, insofar as it would contribute to dissuading our enemies from even attempting it. Even a missile defense system capable of stopping one or two missiles before detonation at high altitude would likely have a deterrent effect.

Unfortunately, there are many in Washington who would rather not plan for the possibility of an EMP strike. Like Ambassador Bolton, Graham was highly critical of the U.S. Intelligence Community (IC). The IC does not have a view on why the Iranians would be interested in detonating a SCUD missile at high altitude from a sea-based platform. But the IC generally does not worry about things that have not happened yet, Graham explained. Only after the fact does the IC go into crisis mode. For the IC, there is very little ground be-
tween ignorance and crisis. Similarly, Dr. Graham observed that the EMP threat became taboo inside the Pentagon for a decade. People prefer to pretend the threat does not exist rather than actually think through the problem. Given the reluctance in Washington to deal with these issues, further independent analyses of the EMP threat must be undertaken. The analysis should be performed by those not vested in downplaying or ignoring threats to this nation’s security.

Weapons capable of executing an EMP attack are increasingly finding their way into the hands of states and non-state actors around the globe. Mr. Ilan Berman, the Vice President for Policy of the American Foreign Policy Council, provided an overview of the current proliferation environment. For Mr. Berman, the problem is not just Iran, but what the Iranian program represents, “a collapse of the non-proliferation regime as we now understand it.”

On the eve of the Iraq invasion in March of 2003, Iran was the only country in the Middle East with a disclosed nuclear program. Today, “there are at least a dozen, including Yemen, Algeria, Syria and others,” Berman said. Advanced weaponry has, of course, proliferated throughout the Greater Middle East for some time. But other countries’ “focus on nuclear efforts is new” and demonstrates a “loss of confidence” in the ability of the United States to contain states such as Iran from achieving regional hegemony. In response to an Iranian bomb, states such as Saudi Arabia and Egypt—Iran’s two most significant competitors—will most likely go nuclear. Berman argued that any containment strategy will need to look at the region as a whole, not just Iran. America’s inability to deal in a resolute manner with countries such as Syria, where an undisclosed nuclear program was discovered in 2007, compromises our ability to stop the proliferation of nuclear weapons throughout the region.

Moreover, the nuclear problem is “inherently asymmetric,” and gains by terrorist actors in this area are especially troubling. The Bush administration has published a number of national strategy documents that highlight the importance of preventing terrorist access to these capabilities. But some of the most powerful terrorist groups “are on the cusp of such a transfer” and the international community has not developed “a good mouse trap to deal with this problem.”

During the Cold War, the arms race was carried out and controlled by two countries: the U.S. and the Soviet Union. The main concern was “vertical proliferation” within those countries, in which the arsenal of each became more lethal. Now, the problem is precisely the opposite. Berman warned that “horizontal proliferation,” that is, collaboration by a series of state and non-state actors, dominates the scene. A prime example of this phenomenon is the A.Q. Khan network, which was fronted by the father of Pakistan’s nuclear program and sold nuclear technology throughout the Middle East. “What we are actually dealing with today,” Berman said, “is an international architecture that is self-perpetrating and no longer correlated to the robustness of a single economy.” In this “open market,” the effect of political and economic restraints is unfortunately lessened.

From Berman’s perspective, Iran is a “bellwether” for future counter-proliferation efforts. The outcome with Iran will determine strategic focus of other regimes in the years ahead. It is important to note that despite Iran’s superficial denials, its leaders “are not very clandestine about their strategy.” Like the Chinese, they are focused on asymmetric forms of warfare. The Iranians use proxies and their nuclear program to provide a response to American interests and their other enemies. In addition, Berman surmised that the Iranians are “looking for game-changers,” that is, technologies that cement their regional hegemony and provide them with a significant war-fighting advantage.

Berman argued that BMD provides an essential response to the current proliferation problem. Missile defense provides countries with options other than acquisition of weapons of mass destruction, and is “vital on a strategic level to nullify the Iranian threat.” The limited system that exists today “has the right idea, but requires much more to match the Iranian threat.” Going forward, counter-proliferation will necessarily require a robust missile defense capability.

Following the panel’s testimony, a wide-ranging discussion with members of the audience ensued. There was an especially strong interest in the December 2007 NIE on Iran’s nuclear program and its ramifications. Berman noted that the NIE effectively ended the Bush administration’s efforts to build a Sunni-dominated coalition throughout the Gulf that could contain Iran’s hegemonic aspirations. As a result, it is now much more difficult for the international community to deal with Iran.

One writer who has long studied Iran and the IC provided more details on the NIE, saying that it was “written specifically to undermine the Bush administration” and to take “the military option off the table.” The NIE was misleading in the way it treated our intelligence on Iran’s nuclear program. And given the nature of the ideological regime in Tehran, we should be especially concerned by their pursuits. In this vein, the writer asked Dr. Graham how close Iran was to building a Sunnified nuclear weapons-grade material.
Panel Two: The Politics of Ballistic Missile Defense

Much of the first day of the conference in Michigan focused on the very real possibility that America could be struck by ballistic missiles. After hearing the threat explained in intricate detail, one could only wonder: Why has America been left undefended? According to the members of the second panel, the answer is to be found in the politics of ballistic missile defense.

Mr. R. Daniel McMichael, a consultant on national security and defense affairs and Secretary of the Sarah Scaife and Carthage foundations, chaired the second panel. Like other conference participants, he began by pointing out that America has no significant defense against ballistic missiles, whether they are armed with chemical, biological or nuclear warheads. But McMichael said that this state of affairs came about not because of ignorance, or because of insufficient technology, or because a robust BMD capability costs too much. We have no ballistic missile defense capability because of politics. In particular, Mr. McMichael placed blame on the doctrine of Mutually Assured Destruction, or MAD, as it is commonly known.

McMichael explained that the MAD doctrine was formed by a group of intellectuals centered at Harvard and MIT in the 1950's. With the election of President Kennedy in 1961, these scholars were brought into the Pentagon to steer America's strategic thinking on warfare in an age of advanced technology. In the 1960's, MAD emerged as America's guiding philosophy for dealing with the strategic threat of ballistic missiles. By the time President Johnson took office, MAD was a central part of America's nuclear deterrence and arms control policies.

The fundamental principle of MAD is a so-called "balance of terror" in which the population is left undefended and only offensive missile sites are protected from attack. This Cold War era doctrine maintained that the U.S. and the Soviet Union should preserve an even balance of weapons that could be targeted against each other. It was highly doubtful that either nation would survive an exchange of these weapons, producing a situation, so the logic goes, in which neither nation had an incentive to attack the other.

McMichael said that President Lyndon Johnson and his Secretary of Defense Robert McNamara became so persuaded by the MAD doctrine that they decided to present their thinking to the Soviets. Ironically, their Soviet counterparts "did not much care for MAD," criticizing it as "immoral and commercial." Indeed, the MAD doctrine abrogates the U.S. government's constitutional obligation to defend her citizens from an attack. Leaving millions of citizens vulnerable to mass destruction, while banking on a delicate "balance of terror" to protect them, can hardly be what the founding fathers had in mind by requiring the government to "provide for the common defense."

Even though it should have no direct purchase today, the legacy of the MAD doctrine can still be found throughout the arms control community. McMichael told the audience in Michigan that the "ghost of MAD still exists and impedes any thought of an effective, layered defense" against a ballistic missile attack. As a result, America's population has been left unprotected.

For a better understanding of the efforts being made to educate the American people of this simple fact, the panel turned to Dr. Daniel I. Fine. In addition to being a Research Associate at the Mining and Minerals Resources Institute at MIT, Dr. Fine is a co-developer, with Ambassador Henry Cooper (former head of the Strategic Defense Initiative Organization), of the state and local East Coast Missile Defense Initiative, which has been supported by resolutions of the New Hampshire and Virginia state legislatures. The East Coast Missile Defense Initiative focuses on the threat of short-range missile attack from container ships off an American coast. Fine observed that roughly 80% of America's population lives on the coasts, so a coastal attack poses a substantial and asymmetric threat to the American population.

Fine also asked the audience to consider what an EMP attack could do to this nation's ability to procure basic resources. An EMP set off above Lake Charles, Louisiana, which is the eleventh largest seaport in the United States and a key bottleneck for gas and oil shipments and production, would cripple the U.S. economy. Fine explained that the price of oil could shoot up to $300 per barrel, dwarfing the highest prices experienced in recent years. Attacks on other strategic chokepoints along the East Coast could also result in catastrophic damage to the American way of life.

Because of such possibilities, Fine and others have been working to build awareness throughout New England and elsewhere. In New Hampshire, the doctrine of MAD was a part of the debate over the need for a ballistic missile defense. Another factor is the widely accepted myth that this nation has already deployed an adequate missile defense capability. Dr. Fine said that this was one of the issues he and Ambassador Cooper have encountered with the East Coast Missile Defense Initiative in New Hampshire and the Carolinas. While the American people, by and large, do not know that they are vulnerable to such an attack, many in Washington simply do not focus on the possibility. The Department of Homeland Security, for example, has focused much of its resources on protecting against the possibility of a weapon.
being smuggled into one of this nation's many ports, while almost completely ignoring the possibility of a ballistic missile attack. A missile launched from a ship off an American coast could circumvent port security entirely.

How can public awareness be raised, given these obstacles?

Brian Kennedy, President of the Claremont Institute, spoke of “three teachable moments” which could have been used more effectively. Mr. Kennedy explained to the audience in Michigan that the first came in 1995 when a National Intelligence Estimate produced by the Clinton administration looked at upcoming threats to U.S. security. The NIE noted that Russia and China had strategic missiles capable of threatening American interests, but concluded that the U.S. did not face a threat of missile attack for at least 15 years. This conclusion was reached, however, only through slight of hand.

Excluded from the 1995 NIE assessment were two states, Alaska and Hawaii. The NIE ignored previous assessments by the Defense Department highlighting the possibility that these two states could be subjected to an attack by a North Korean missile much sooner. The analysis was deliberately politicized by the intelligence community to meet preexisting policy preferences. Washington did not want to do anything about missile defense, so the U.S. Intelligence Community rewrote the threat matrix to meet this desire.

When news of the NIE shenanigans became public, there was considerable outrage. The citizens and many state legislators in Alaska and Hawaii were not pleased. Soon both states were calling for at least some form of protection, and to be included in any future threat assessments by the intelligence community. In the years that followed, the legislatures of Alaska and other states passed resolutions calling for a missile defense capability.

The second “teachable moment,” Mr. Kennedy explained, came the year after the specious NIE. In 1996, China began test-firing its ballistic missiles over Taiwan, which the government of China has long considered a rebel island. As tensions flared over Chinese provocations in the Taiwan Strait, a Chinese official let an American diplomat know that the U.S. “would not intervene,” because “Americans would not be willing to sacrifice Los Angeles on Taiwan’s behalf.” The threat was clear. China would consider using its ballistic missile arsenal against America’s cities if the U.S. intervened in what China considered to be its exclusive sphere of influence. The lack of a defense against ballistic missiles and nuclear weapons impeded America’s freedom of action.

The Chinese official knew what most Americans did not—America was vulnerable to a ballistic missile strike. A survey of American people at the time showed that 76% believed that the United States already had a missile defense system. Americans assumed they were safe. They continued to assume they were not vulnerable to foreign threats throughout the 1990’s, when it became a common assumption that the end of the Cold War meant there was no imminent threat to this nation. Moreover, it was widely assumed that Russia and China posed no threat to American security because the Cold War calculus no longer applied. In reality, and in addition to continuing to build their own strategic offensive capabilities, Russia and China exported their dangerous technologies around the globe, putting their arsenals in the hands of rogue nations.

The assumed tranquility of the post-Cold War era was shattered on September 11, 2001, which Kennedy described as the third “teachable moment.” On that day, it became clear to the American people that foreign actors threatened America’s security. True, Islamic terrorists did not use ballistic missiles to inflict great damage. But it was clear we could no longer assume away the risks, as so many had done previously.

The only prudent course of action is to plan strategically for the threat posed by the ever-increasing stockpiles of ballistic missiles around the globe. Unfortunately, Kennedy said, this is not the course that most politicians have taken. “Many Republicans support missile defense, but do not do anything about it.” For them, it is just a “political checkbox.” Many Democrats, by contrast, are opposed to developing any real ballistic missile defense capability.

Given these political realities, Mr. Kennedy explained to the audience that the Claremont Institute utilizes the “Churchill model” of “explaining the threat to small focus groups.” Just as Winston Churchill planted the seeds of concern over Nazism in the British population by talking to small groups of citizens, the Claremont Institute seeks to increase awareness of the ballistic missile threat in the U.S. by holding conferences such as the one in Dearborn and other small venues.

For additional context on why the American political class resists robust BMD capability, the panel then turned to Dr. Kiron Skinner, a Research Fellow at the Hoover Institution at Stanford University. Echoing other conference participants, Dr. Skinner said the “U.S. government has failed on the role of missile defense.” Dr. Skinner emphasized the role of localized efforts in exerting “pressure on the federal government.” When you
walk the American public through MAD, its shortcomings, and the logic of missile defense, Skinner added, “they get it.”

Dr. Skinner is an expert on the writings of President Ronald Reagan, having published best selling books on the late President. She explained to the conference's attendees how in 1968, during his first term as the Governor of California, Reagan “challenged the role of MAD,” saying that “the governors should step up and take a leadership role in defending the American people.” Reagan’s early objections to the MAD doctrine would later evolve into his Strategic Defense Initiative. And Soviet archives have revealed that the Soviets were very concerned about the ability of the U.S. to build missile defense systems. The Soviets understood just how serious Reagan was.

But today there is no national leadership on ballistic missile defense. If the U.S. government won’t pursue ballistic missile defense, Dr. Skinner remarked, “then the American people need to pressure the federal government.”

Dr. Skinner asked rhetorically, “Why is missile defense divided along partisan lines?” and “Why are academics against it?” She explained to the audience that there are four big theories of international relations in the academic world, and all of them dismiss the importance of BMD. The first theory is centered on MAD, which is one of the dominant ways of thinking. The second theory is political realism, which Skinner says revolves around the idea that “states care about security more than anything” and do not want to risk the instability caused by a war involving ballistic missiles. Political realists have largely ignored BMD.

The last two theories Dr. Skinner called “anti-power” theories because they reject any projection of American power. One of these theories is centered on the idea of a democratic peace, and assumes that with an increasing number of democracies in the world there will be less instances of war. Skinner coined the fourth, and final, school of thought “liberal theory.” Proponents of this school believe that sovereignty should be pooled in international institutions, such that states will get away from their own interests. Both the “democratic peace” theory and “liberal theory” hold that America should not seek a BMD capability on its own because it may disrupt the burgeoning international order, which will do away with the need to defend against a ballistic missile strike.

These intellectual constructs may not be drawn from the real world, but they can have a powerful effect on it. Skinner cautioned that “there is no intellectual support for missile defense,” and much of academia’s theoretical work “is moving in an anti-power” direction.

At the conclusion of Dr. Skinner’s presentation, Mr. Michael pointed out that nuclear abolitionists and others who believe America should unilaterally disarm have reappeared in recent years. When discussing BMD capabilities, some intellectuals have resurrected the misleading terminology used by the Soviets to characterize Reagan’s SDI systems as offensive “space strike weapons,” as opposed to defensive systems.

Dr. Pfaltzgraff concurred, pointing out that some of the leading strategic analysts in the U.S. today are abolitionists. It is dangerous to think that unilateral nuclear disarmament could end the need for a robust ballistic missile defense. The notion that America should not pursue a BMD capability in space is similarly misguided. Most of the objections to space programs are aimed at America, which retains a substantial technological lead. The Chinese and Russians are more than happy to advance these arguments to narrow the gap between them and the United States, who they see as their “strategic competitor.” Meanwhile, the Russians and Chinese continue to develop their own space-based programs, preparing for the day when they catch up to America’s technological capabilities.

Luncheon Address: Space and Missile Defense: Challenges for the Twenty-First Century

On the first day of the conference, Senator Jon Kyl addressed the conference via satellite from Washington as the attendees had lunch. A three-term senator from Arizona, Kyl currently serves as Republican whip, making him the second-ranking member of Republican leadership in the upper chamber. He has been a leader on policy related to finance, the courts, intelligence, terrorism and national security. Kyl is the ranking member of the Senate Subcommittee on Terrorism, Technology and Homeland Security.

Senator Kyl began his remarks with a brief and worrisome description of the current state of the politics of missile defense. Many Democrats oppose missile defense because they fail to recognize the threats against the United States. Noting that there are significant differences between the parties and their presidential nominees on missile defense, Kyl pointed specifically to Democratic Senator Charles Schumer who, he said, so fundamentally misunderstands the threat that he recently urged the U.S. government to make the Russians “whole” for their help with the Iranian nuclear program. Kyl also pointed to Barack Obama’s views (“I, for example, don’t agree with a missile defense system.”)
A major source of opposition to the program, however, is ignorance. Many members of Congress, Kyl observed, simply do not know much about the nature and scope of the program.

Shifting from domestic politics to international threats, Kyl noted that the ballistic missile threat continues to grow. The Rumsfeld Commission reported in 1998 that the threats were growing rapidly. In many respects, the challenges today are more difficult than they were during the Cold War. Instead of just one or two countries presenting a threat, many countries now have ballistic missile capabilities. While Iran and North Korea do not yet have a long-range missiles, they can certainly threaten their neighbors, such as Japan, and could deploy shorter range missiles aboard ships to put them within range of the United States.

Kyl also spoke about what he termed a “new threat”—the threat to our space-based assets. The United States economy and defense industry runs by satellite these days, Kyl said, and it makes sense for a potential enemy to explore how it might disrupt those capabilities.

What would a country like China potentially do? It might want to destroy our satellites with a ballistic missile. To those who accuse the United States of “weaponizing” space, Kyl would reply, What would you call a Chinese missile that targets our satellites in space? Chinese analyst Wang Chen has called satellites the “soft ribs” of the United States. For people who want to hit the U.S., this type of attack has big potential.

Senator Kyl closed with an observation made by Ronald Reagan: “Of the four wars in my lifetime, none was started because the United States was too strong.”

Senator Kyl had time to take a few questions from the group. In response to a question about the EMP threat, Kyl noted that he had held hearings about the threat and warned that the intelligence was “clear” that Iran had an interest in EMPs. In response to a question about the views of the presidential candidates, Kyl called John McCain a “strong” supporter of missile defense. Another audience member asked why Russia would have a missile defense around Moscow if missile defenses do not work. Kyl replied that they do have a system and it is functioning. “One of the biggest concerns I have is that they’ll begin sharing that system with other countries in the world. The Chinese may already have access to it and it would be very concerning if Iran had access to it.”

Panel Three: Missile Defense Policy for the Twenty-First Century

The third panel of the conference began with a straightforward question: What should America’s missile defense policy be today? Discussion tended to focus on the need to take the long view on missile defense, with systems oriented to meet the threat. This was President Reagan’s view on missile defense.

As previous panels had noted, the MAD doctrine has discouraged thinking and planning oriented toward meeting the actual threats from ballistic missiles. The fierce competition for budget resources in Washington allows MAD to serve as an excuse to allocate funds elsewhere. For many in the uniformed services, the dominant concerns are fighters, armor, and carrier battle groups, leaving missile defense on the backburner. These interests combine with a small but vocal minority in Washington which believes American vulnerability is inevitable and even desirable. At the very least, American weakness prevents the United States from projecting power around the world.

The institutional and budgetary hostility to developing a robust BMD capability is not without historical precedent. A similar difficulty faced those who argued for the development of carrier-based air defenses. Aircraft carriers were once widely thought to be unnecessary. Many people argued that battleships would remain queen of the sea, so resources were focused solely on other types of ships, especially traditional battleships.

For this reason, the Bush administration took an incremental approach to implementing a BMD system. The old paradigm for dealing with ballistic missiles focused on improving and expanding America’s strategic offensive capabilities. The new paradigm, implemented by the Bush administration, included both active and passive defense systems.

The first step towards this new approach was ending the ABM Treaty, which was inadequate for dealing with the threat matrix. The 1972 treaty was outdated and stifled creative thinking about how to defend the nation. The second step was to put in place some limited BMD capabilities. By 2004, the Bush administration had deployed interceptors to a small number of sites and deployed or upgraded a network of sensors. In the summer of 2006, the U.S. began to exercise its new but very limited missile defense capabilities in a war-like environment, when North Korea was test-firing ballistic missiles. What the Bush administration has not done, however, is develop space-based systems. A space-based defense would offer tremendous advantages in stopping a missile attack earlier, giving us the ability to target a launch in its slower takeoff phase, as well as a global reach. The need
Panelist William Van Cleave was a professor of International Relations for twenty years at the University of Southern California and has wide-ranging experience in analyzing strategic defense issues. Professor Van Cleave explained that by the 1950’s a significant portion of the defense budget was allocated to BMD. And by the late 1960’s, both Democrats and Republicans “had proposed very grandiose plans for missile defense.” These were, of course, greatly accelerated during President Reagan’s tenure, but took a step back in the 1990’s when President Clinton killed a number of programs.

Professor Van Cleave emphasized that “whatever improvements have been made” during the Bush administration, our missile defense capability remains “still very limited” and “directed against only a few, not one hundred warheads.” For example, America’s limited BMD capability is “not directed at the Russians or the People’s Republic of China,” he said. “Space is essential to any type of layered defense,” but it is “essential for land-based systems as well.” A truly effective BMD system would deploy space, air, and land-based systems.

During the discussion, audience members were eager to discuss the Washington scene. One long-time defense analyst expressed his view that budgetary constraints make it difficult to keep America’s BMD projects alive, let alone improve their efficacy. In response, panel chair Brian Kennedy, President of the Claremont Institute, pointed to our existing defense expenditures, noting that there is clearly room to move money to vital BMD projects.

Other observers argued that an increase in defense expenditures is not really needed, nor is it even the main impediment to effective defenses. The amount of money required to fund effective missile defense programs is small compared to the overall budget, and space-based systems cost very little, comparatively speaking. The military services should be responsible for procurement, because they are currently responsible for procurement across the board. Existing surplus in the military services’ budgets could be reallocated to BMD, if the political will existed to do so.

A congressional staffer further explained the political lay of the land on Capitol Hill. There are two camps in Congress who are opposed to missile defense. Democrats who are “wholly opposed” to BMD compose the first camp. There are not many of them, but they attempt to cut funding whenever possible. Democrats who will apportion some funds for BMD, but fund near-term systems at the expense of longer-term initiatives, make up the second group. President Bush had allocated $10 million (a comparatively small amount) for studying space-based initiatives, but this was cut by Democrats who argued it competed with current land and sea-based systems. The Democrats also play a game by saying that only proven systems should be funded—a prohibitive requirement, considering the inability to adequately test systems prior to deployment in a test environment. These Democrats promise funding for research and development, but keep newer BMD capabilities from ever reaching a phase where they can be implemented. This shortsightedness means that America is not planning for the next stage of BMD, let alone developing systems that are adequate for our current needs.

One observer pointed out another game of semantics about which those in attendance should be aware. Some in Congress want threats to be “validated” through legislation before building the systems to defend against them. Until threats like Iran are legislatively validated, however, they do not want to take the necessary defensive measures to account for their burgeoning offensive capabilities. But by the time nations such as Iran reach a “validated” threat level, it may be too late to begin putting adequate defenses into place.

Another onlooker asked the panel about America’s ability to cooperate with other nations in deploying a robust, worldwide BMD capability. In particular, nations such as Japan, the Ukraine, and South Korea would be interested in internationalizing our space-based initiatives. This type of international cooperation was barred under the ABM Treaty, which was one of the reasons the Bush administration backed out of it. Previously, any time the U.S. attempted any form of international cooperation the Russians would claim that it violated the ABM Treaty, making it impossible to move these efforts forward.

Panel Four: The Future of Space Warfare: Threats and Defenses

For some, the idea of space warfare conjures up images from popular culture. Space-based warfare seems futuristic or fiction, the stuff of Hollywood. Opponents of President Reagan’s Strategic Defense Initiative derisively referred to it as the “Star Wars” program to downplay its importance. This mischaracterization was so effective that the Soviets gleefully seized upon the phrase as part of their attempt to persuade Reagan to abandon the program.

Space warfare is no fantasy. And we ignore the increasing use of space by this nation’s enemies, or strategic competitors, at our peril. The effects of an EMP attack, outlined by Dr. Graham during the first panel of the conference, are not limited to air, land, and sea. An EMP attack and its asso-
ciated exo-atmospheric nuclear radiation, including radiation that would be trapped in the Van Allen radiation belts, would also reverberate throughout space.

Dr. Peter L. Hays of the Eisenhower Center for Space and Defense Studies began the fourth and final panel by explaining the effects of an EMP in space. If they are not hardened to deal with the impact of an EMP strike, satellites in space will fail. Dr. Hays said that in addition to land-based technology failing during the Starfish tests in the 1960’s, all seven satellites in Low-Earth Orbit failed within weeks because they were not able to operate within the pumped up Van Allen radiation belts caused by the tests. This decades-old example simply highlights the fact that modern warfare has ramifications across our entire physical world. Indeed, nations such as Russia and China, although technologically well behind the United States, continually pursue new and better space-based capabilities. Other nations that do not have robust space programs, such as Iran, are also pursuing space systems for advancing their military capabilities.

As with virtually everything else in the defense policy world, American deployment in space is politically controversial. For an overview of U.S. policy, the panel again turned to Professor Van Cleave, who highlighted two official documents published by the U.S. government. The first was President Bush’s National Security Presidential Directive (NSPD) on U.S. National Space Policy, published in August of 2006. The second was the Report on U.S. Space Policy, published by the U.S. Department of State’s International Security Advisory Board in 2007. Both documents have been largely ignored, Van Cleave explained, but they provide a critical window into America’s official posture on space. There are generally two groups in Washington, Van Cleave said, those who “understand our interests and threats in space” and those who believe that arms control agreements and treaties reduce American involvement in space. Professor Van Cleave said that both of the documents he was discussing fall firmly into the first camp. That is, it is recognized within government that America has definitive interests in space that require thinking outside of the traditional arms control structure.

The 2006 NSPD on space policy states that the U.S. considers space capabilities vital to its national interests and that the U.S. will take steps necessary to protect its capabilities. The U.S. will respond to interference, and deny, if necessary, adversaries’ use of space for activities hostile to its national interests. Importantly, the NSPD makes it clear that the U.S. will oppose agreements and treaties that seek to limit U.S. space activities and interests. Because of the prominence of U.S. interests in the NSPD, Professor Van Cleave explained, the document has been met with criticism. Its recommendations, however, have gone largely unfulfilled. There is much skepticism even about whether or not the NSPD represents U.S. policy.

Meanwhile, according to Van Cleave, the State Department’s report makes it clear that policy should guide our diplomacy regarding space. In addition, the State Department’s report goes into great detail concerning the scope of the space-based threats the U.S. faces. Van Cleave said that the State Department’s report shows that these “threats are greatly expanding” and states are “intentionally or unintentionally” building assets that threaten space. The clearest threat comes from China, which has been pursuing a very active space program for years.

The United States “has generally assumed that space would be a sanctuary,” Van Cleave observed, and as such “less importance has been placed on the survival of our space-based assets” than on our offensive capabilities. But given the ever increasing threats in space, the survival of our assets is of growing importance. Van Cleave said that the United States relies on dissuasion and deterrence for the safety of our satellites, partly by preference and partly by necessity, since it lacks the means to defend them and deny successful attacks upon them. Dissuasion has not prevented at least a small number of countries from developing or acquiring the means to threaten our space systems, and Van Cleave expressed concern that there is not high confidence in even our offensive nuclear deterrent. More should be done to defend our systems, and—as the 2006 space policy directive requires—deny adversaries the ability to attack them.

Undoubtedly, new efforts are required, especially given the ways that space changes our notions of war-fighting. For an overview of how warfare is changing in the space age, the panel turned to General John Piotrowski, who—since retiring from the USAF in 1990—has consulted with a number of government and private entities. It is not clear how the old rules of war apply to space. One of Clausewitz’s principles of war, for example, involves the massing of forces; that is, gaining an advantage over one’s enemy in terms of the relative amounts of forces that can be assembled at a single point. But in space, General Piotrowski asked, how do we apply the principle of mass? Do we want our forces to run around in a group? Or do we mass our forces at a particular point in time?

The reality is that the basics of space warfare have yet to be worked out. Even worse, the reorganization of the Pentagon under Secretary Donald Rumsfeld has left America without any unity of command or simple-to-follow com-

1 The Report may be accessed at http://www.state.gov/odocuments/organization/85263.pdf.
mand structure for space. These two factors leave unclear how these issues will be resolved or who will ultimately be responsible for day-to-day decision-making. Decisions need to be made quickly, Piotrowski explained, because America would not have long to respond to weapons deployed from space, or even current ballistic missiles. There is today much talk bemoaning the “militarization of space” but, Piotrowski humorously noted, there was never any talk of the “militarization of dirt, sea, or air.” Rather than a sanctuary, space is simply the next area where humanity will compete for supremacy. While much remains to be done for how to think about space, it does not make sense to think of it as an environment where the laws of competition will cease to exist.

Jeff Kueter, President of the George C. Marshall Institute, provided a summary of how competition in space is unfolding. Mr. Kueter explained that space is “critically important to how we fight wars today” and how it is used is “fundamentally different from the Cold War” construct that guided our thinking in the past. Space capabilities are becoming “more and more ubiquitous,” Kueter said, with the next generation of war fighters learning how to fight by utilizing space.

According to Kueter, it is “logical and rational that adversaries of the U.S. would look for ways they could threaten America’s assets, especially in space where they would gain asymmetrically by reducing our freedom of action or deter us from a course of action on Earth. Enemies could, for example, attack both America’s physical infrastructure (satellites or ground stations) and cyber infrastructure (data links and other electronic communications).

The threats from space are clear, but the question remains, said Mr. Kueter, “What are we going to do about it?” He noted that “we cannot control the diffusion of space-based capabilities. And those who believe that “space can be retained as a sanctuary” are mistaken. Indeed, those who want America to follow the path of traditional arms controllers “are losing some of their steam” as the extent of China’s designs for space becomes clear and the Chinese refuse to answer basic questions about verification or compliance under proposed treaties.

Space consultant James Oberg likewise explained that our understanding of space is confounded by widespread ignorance. Discussions of space by the media are often hopelessly confused. Many terms and phrases do not make sense and lack descriptive precision. Reporters often speak, for example, of a satellite being “shot down.” Mr. Oberg pointed out that this phrasing brings “earthly terms into a space environment,” where the traditional concepts of up and down do not make sense. Such confusion tends to inhibit our ability to articulate a sound strategy for space, including the defense of America’s assets.

Luncheon Address: Congressional Perspectives on Near and Long Term Missile Defense Planning

Congressman Trent Franks spoke at the luncheon during the second day of the conference. Representing Arizona’s second district, Franks has developed a reputation as one of the leading thinkers on missile defense in the House of Representatives.

He began by pointing to the progress the United States has made on missile defense. “A few years ago,” Franks said, “critics said hitting a bullet with a bullet couldn’t be done. We can now hit a pinpoint on a bullet with a bullet.”

In that time, we have seen a fundamental shift in the debate. Rather than debating whether missile defense would work, he said, we’re now fighting about those ready to deploy versus those being researched. “That is major progress.”

Franks then explained to the audience his vision for building on that progress. “A few months ago we marked the twenty-fifth anniversary of Reagan’s SDI speech,” he said. There have been two major developments since 1983. First, our commanders can defend our soldiers from short and intermediate missiles. The Patriot and Aegis systems will soon be joined by the THAAD missile defense system. Second, the President now has the capability to put us on alert. We now have a ground-based missile defense system that gives us a 90% probability of intercepting a North Korea missile. Since 2001, Franks noted, 46 of 55 attempted intercepts have been successful.

Missile defense is no longer mere theory. Opponents cannot still maintain that it is impossible. So now the debate has shifted from the development of near term to far term systems. Congressional Democrats are cutting far-term systems, Franks explained, and this is irresponsible given that our near-term systems today were once far-term systems.

The most contentious issue in far-term programs is the space layer. Franks said. Democrats have fought hard to block it. “And it may be the most important. We need a truly global missile defense layer.”

Franks closed by recommending that proponents of missile defense do three things: first, remind people that the debate about the workability of missile defense is over; second, do not fall for the “study-forever, deploy-never” tactic of missile defense opponents; and third, communicate that defensive technology must outpace the offensive threat.

Congressman Franks took several questions from the audience. One participant wondered how Congress would respond if a Democratic president sought to ban weapons in space. Franks replied that the arguments against “weaponizing space” can be effective because of a lack of understand-
ing. We have already acknowledged space as a future theater of conflict, and so has China. Missile defense is not about weaponizing space; it is rather about creating a defensive capability. Intercepting a missile coming at your families and children is not an offensive act, Franks said.

Franks also noted that “blue-dog” Democrats in Congress are open to ballistic missile defense. Some, such as Representative Jim Marshall from Georgia, have been very helpful on the issue.

In response to another question on the EMP threat, Franks said there are really only two people in Congress who talk about this threat—himself and Roscoe Bartlett. They have introduced legislation that makes reference to EMPs, but fully expect it to fail. The threat remains distant to many of his colleagues. But if Iran has just a couple of warheads, they could have such a capability. Franks called EMPs the “terrorists’ weapon of choice.” For countering the EMP threat, Franks laid out a three-pronged response: first, deploy robust missile defenses; second, keep countries from obtaining EMP capability; and third, harden the necessary infrastructure here in the homeland.

Plenary Sessions

Bret Baier, the chief White House correspondent for FOX News, opened the two plenary sessions with a provocative question: What is the most compelling argument against missile defense?

“There is no compelling argument against missile defense,” said one participant. “We remain vulnerable and we will be increasingly vulnerable if we don’t do it.” Another added that “Missile defense is a victim of public choice theory. An entrenched minority can have a disproportionate influence in the public.” Another participant suggested that the best argument against missile defense is a budgetary one. In short, it would cost too much. But others revealed that the costs pale in comparison to other defense spending and the costs of a successful strike.

Still another participant reframed the question: “What is the most effective impediment to missile defense?” Then he answered it. “Today it is largely attention deficit disorder. There is so much coming at people that it’s not as high on the list of priorities as you’d like to make it.” These obstacles include “two major theaters of combat” and major “challenges to the economy.”

Mr. Baier then read Senator Barack Obama’s presidential campaign statement on missile defense to the gathering.

An Obama administration will support missile defense, but ensure that it is developed in a way that is pragmatic and cost-effective; and, most importantly, does not divert resources from other national security priorities until we are positive the technology will protect the American public.

Baier compared Obama’s statement with that of presidential candidate Senator John McCain:

John McCain is committed to deploying effective missile defenses to reduce the possibility of strategic blackmail by rogue regimes and to secure our homeland from the very real prospect of missile attack by present or future adversaries. America should never again have to live in the shadow of missile and nuclear attack. As President, John McCain will not trust in the “balance of terror” to protect America, but will work to deploy effective missile defenses to safeguard our people and our homeland.

There was virtual unanimity among conference participants that Obama’s statement, ostensibly in support of missile defense, practically means the opposite. “Obama wants people to think he’s concerned about the threat,” one participant said. Another added: “There is absolutely no clarity in that Obama statement. It makes you feel good. You can come back to that statement and it can mean anything you want.” He suggested the Obama statement could be translated to mean, “I’m against missile defense but will not say anything.” Indeed, Obama had previously stated that he did not support missile defense.

Participants agreed that McCain’s statement seemed more forceful, and that McCain’s rejection of the “balance of terror” (i.e. the MAD doctrine) was a significant step in the right direction.

One participant pointed out: “Obama used the word ‘pragmatic’—that’s the core of Democratic criticism. It’s Obama’s way of making this a right-wing, ideological issue. The opposite of pragmatic is ideological.” But this raises important questions: “What’s cost-effective? How much would it cost to save Los Angeles? How much was the World Trade Center worth?”

Baier then asked about the cost of missile defense. There was widespread agreement that the costs of a ballistic missile strike could be at least as high as that of the 9/11 attacks, and that in that context the cost to build a robust BMD capability is comparatively low.

Baier later directed the discussion to the relation of missile defense debate to Russia, the ABM Treaty, and space. Most of the remaining discussion was devoted to how to deal with an Obama administration which may oppose missile defense, and the need for a grassroots movement to raise awareness of the ballistic missile threat.
Addressing the first point, one participant said that we need to come up with a "defensive strategy" on missile defense during an Obama administration, ensuring that certain minimal capabilities and programs are retained.

Congressman Franks, who participated in the session, added that we need to build a grassroots recognition of this issue. The difference between a Republican administration and a Democratic administration on this issue over the next four years will be profound.

Another observer pointed out that one of Michigan’s favorite sons, General George Custer, who led the charge which turned the tide at Gettysburg during the Civil War, might be a rallying cry, “Go Wolverines!” referring to the Michigan Seventh. Such a cry, he suggested, could be used again by Michiganders to lead the nation toward strategic defense.
This Executive Summary is the part of the Space and U.S. Security Net Assessment undertaken by the Institute for Foreign Policy Analysis on the current status of U.S. space activities in comparison with other countries that have developed space programs in recent decades. Our goal is also to project major trends into a 10-20 year timeframe to identify factors that may have important implications positively or negatively on the position of the United States relative to other nations as we move toward and into the 2020 timeframe. Because of the inherently dual-use nature of space technology and the growing role of the commercial sector, this net assessment takes a broad view of space encompassing space technologies for military uses and for commercial purposes.

This net assessment was prepared as a contribution to the discussion about the future role of the United States as a space-faring nation. There is substantial sentiment to the effect that the United States can avoid the “weaponization” of space by restricting its future space-related national security programs, including foregoing deployment of space-based missile defense. Therefore, our net assessment includes a discussion of arguments about weapons in space. How the debate about defense in space is resolved will shape the types of space-based capabilities that the United States deploys in the years ahead. How U.S. space policy is translated into action depends vitally on levels of public understanding and support.

The United States today remains the leader in space and the most dependent of all nations on space both for its national security and its economic wellbeing.

- A close relationship between the military and commercial uses of space exists.
 - Many space-related technologies are dual-use technologies, making it difficult, if not impossible, to delineate clearly between space as an indispensable military arena and space as essential to economic wellbeing.
 - Without space the phenomenon of globalization would not be possible.
 - The private sector plays a growing and critically important role in developing and exploiting space technologies.
- An adversary seeking to attack the United States would have an incentive to destroy U.S. space-based capabilities
 - Among the questions that must be addressed is the extent to which future adversaries may be able to offset U.S. advantages in space and whether they could do so with relatively smaller investment than that of the United States.
 - Equally important is the extent to which other countries, adversaries or otherwise, will themselves become vulnerable as their dependence on space grows and what this will mean for the United States.
- It is important to set forth the major trends that will shape the relative strengths and weaknesses of the United States and its space competitors in a timeframe extending into the 2020 period.
The ability to identify any such trends as early as possible might enable us to take needed corrective action.

Beginning with President Eisenhower, the U.S. has maintained a long history of bipartisan continuity in official statements supporting U.S. activities in space.

- U.S. space activities generally follow a few key principles.
 - The use and benefit for all nations of space for peaceful purposes; the rejection of any claim to national sovereignty over space; cooperation with other nations in the exploitation and peaceful use of space; the right of access to and safe passage in space without hindrance; encouragement of the commercial development of space; and recognition of space as a U.S. vital interest.
 - U.S. actions remain committed to safeguarding U.S. rights, capabilities, and freedom of action in space; assuring deterrence, defense and the means to deny adversarial uses of space that would be deemed detrimental to U.S. national interests; the deployment of space systems to maintain and improve U.S. military capabilities and intelligence; and opposing legal regimes or other international restrictions limiting U.S. access to or use of space for defense.
- Space-based systems enhance early warning and strike capabilities. Space-based systems also provide critical communications and navigation support, which allows for real-time information to be collected and distributed to users in addition to making it possible to navigate conflict areas while avoiding hostile defenses.
 - The military force enhancement mission can be divided into six key areas: geodesy, meteorology, communications, navigation, early warning and attack assessment, and surveillance and reconnaissance.
 - The growing number of missions assigned to space-based surveillance and reconnaissance satellites has led the U.S. to develop a new generation of capabilities.
 - The systems that constitute space-based capabilities, such as satellites, intertwine with the civilian sector.
 - As a result, any effect on U.S. space-based capabilities carries national security implications and commercial consequences.
- Space will become even more vital to U.S. national security in the years ahead as a result of the ongoing proliferation of weapons of mass destruction (WMD). Therefore, it becomes essential that the United States develop a strategy to counter the use, threatened or actual, of such WMD if their development, deployment, and proliferation cannot be prevented. Space is vitally important in a U.S. counterproliferation strategy that meets WMD challenges.

One of the indispensable components of a comprehensive counterproliferation strategy is missile defense. Space provides the best basis for a global missile defense.

- The proliferation of ballistic missiles and weapons of mass destruction (WMD) and their possession by growing numbers of adversaries, ranging from traditional strategic competitors to terrorist organizations, pose a serious and growing threat to the United States, its civilian population and deployed military forces, and friends and allies. This threat encompasses: rogue states, strategic competitors, and terrorists.
- A global layered defense capability that includes space is necessary to counter these threats.
- Layered defenses provide multiple opportunities to destroy attacking missiles in all three phases of flight from any direction regardless of their geographic starting point.

As the leading space power, the greater dependence of the United States on space than any other nation leads inevitably both to vulnerabilities and opportunities.

- Without assured access to space, the U.S. military could not effectively conduct military operations on land, at sea, or in the air. For example, without situational awareness (SSA) provided by space-based systems, it becomes difficult to manage battlefield operations and impossible to track ballistic missiles.
Access to space-based assets is essential for a broad range of private-sector activities. The space infrastructure originally established with governmental funding has furnished the basis for both military and commercial applications. The commercial sector is developing technologies that are utilized by the military.

- In 2007 alone, commercial utilization of space accounted for nearly 70 percent of total global space spending.
- Impressive commercial growth is demonstrated by the fact that in the past two years alone, governmental share of space spending has fallen by 8 percent even though the aggregate governmental spending increased by 12 percent.
- The significance of GPS navigation services to space industry growth is difficult to overestimate. GPS provides an example of the dual-use nature of space technologies. What provides navigation on the battlefield also serves the driver in city traffic.
- The revenue from satellite manufacturing increased by 14 percent in 2007.
- The increased visibility of commercial utilization means that governments will have less control over who gets access to such services. Governments in turn will rely increasingly on the private sector for a broader range of space products, services and technologies.
- The growth of the commercial space sector does not guarantee that the United States will be the greatest beneficiary. This depends on strategic choices taken by countries, including the United States, to exploit such technologies for national security purposes.

Continued U.S. primacy in space will be determined by our ability to anticipate and cope with gaps and weaknesses that could threaten the U.S. space lead in the years ahead.

- Launch services and equipment manufacturing are the most competitive components of commercial space.
 - As the U.S. retires the space shuttle in 2010 and awaits the arrival of the new space orbiter, the Orion, in 2015, the U.S. may have no alternative but to rely upon Russia and its Soyuz space capsule.
- Protecting U.S. interests in space depends initially on the ability to monitor the space environment to gain SSA. U.S. SSA capabilities are insufficient for the current threat environment.
 - Inadequate SSA capabilities would constitute a critical vulnerability. SSA is the foundation of offensive and defensive counterspace measures.
 - The U.S. Air Force is working to develop and deploy a new system that will improve SSA by relying on space-based sensors. The Space Based Surveillance System (SBSS) will deliver optical sensing satellites to search, detect, and track orbiting objects, particularly those in geosynchronous Earth orbit.
- Funding for U.S. space-based programs continues to prove problematic as shortfalls significantly undercut the ability of the United States to address its vulnerabilities. This point is especially true in the case of missile defense.
 - Although some systems are funded at reduced levels, other space technologies are not being pursued at all due to a total lack of funding.
- There is a major crisis in the aerospace industry. If current trends continue, the United States will not have the specialized workforce necessary to support future U.S. primacy in space.
 - According to the Aerospace Industries Association, total industry employment went from 1,120,800 in 1990 down to 637,300 in 2007. In the space sector alone, employment slipped from 168,500 to 75,200 over the same period of time. Of the employees that remained following the initial post-Cold War cuts, it is suggested that 27 percent of America’s aerospace technical workforce is now eligible for retirement.

The threat to and from space is greatest to the United States since it remains more dependent than other nations on space.
Our space systems are vulnerable to disruption or actual destruction, as well as to efforts on the part of an adversary to deny use of them. Such efforts could include interference with satellite systems, detonation of a nuclear weapon causing electromagnetic pulse (EMP) effects on space-based systems and on electronic systems on Earth affecting vitally important sectors such as financial services, transportation, communications, medical services, and food distribution. Our vulnerability in space is enhanced by the possible use of micro-satellites to attack our satellites.

- Countries such as Iran and North Korea are developing EMP-related technologies, including missiles that could launch nuclear warheads. China and Russia already possess such capabilities.
- The wider availability of these technologies in the decades ahead will make U.S. space- and ground-based assets increasingly vulnerable to EMP attack.
- The space programs of other nations are being developed for military and commercial reasons, as well as an asymmetrical means to challenge the U.S. As other nations develop space-based capabilities, their vulnerability will also increase.

Other states are engaged in programs designed to enable them to become twenty-first century space powers capable of challenging or at least competing with the United States. As noted earlier, the growing commercialization of space will create a more level playing field as additional actors gain greater access to the products and services of the commercial space sector and to the enabling technologies as well.

- At least thirty-five countries now have space research programs designed to augment existing space capabilities or lead to their first deployments in space.
- International cooperation in the development of space technologies has increased the diffusion of capabilities to new actors.
 - China is currently developing and acquiring technologies needed for space-based military purposes in order to leapfrog past the present U.S. technological dominance of space.
 - Chinese use of the U.S. GPS and the Russian GLONASS (Global Navigation Satellite System) systems provides PLA units and weapons systems with navigation and location data that can potentially be used to improve ballistic and cruise missile accuracy.
 - In the last few years, Chinese research on small mobile launch vehicles has shown an increased focus on nano-satellites which could enable China to launch satellites swiftly from mobile launchers.
 - China is also developing high-powered lasers, which could be used to “blind” satellites.
 - On January 11, 2007, China conducted a successful anti-satellite weapons test.
 - Though there are still certain areas within Russia’s space programs that have not yet reached pre-1990 levels, a revived space program and new technology are helping to restore Russia’s space programs to their former status.
 - Central to its space programs are Russia’s military and dual-use satellites.
 - GLONASS is a formation of radio-based satellites used to provide navigation services for military and civilian purposes. The system is run jointly between Russia and India with the goal being first to achieve constant and complete coverage of Russian and Indian territory then total global coverage by 2010.
 - Russia maintains a booming commercial satellite-launching service, thanks to converted older ICBMs.
 - Iran has become almost entirely self-sufficient in its military industry and has built up one of the largest ballistic missile inventories in the Middle East.
 - Iran has one satellite in orbit and four more under various stages of development and construction.
Iranian efforts to complete an indigenous space launch vehicle (SLV) are thought to be near completion.

Iran has made great strides toward development of an indigenous space launch capability. In February 2007, it successfully carried out an initial test of a “space rocket” built in Iran; and a year later unveiled its first space center.

The European Space Agency (ESA) is the world leader in providing commercial space launch services with more than fifty percent of the world market for launching satellites into geostationary transfer orbit (GTO).

Of central importance is the Aurora program, established in 2001 to plan for future exploration of the Solar System using robotic spacecraft designed to pave the way for subsequent manned exploratory missions.

Europe’s worldwide satellite navigation system GALILEO is scheduled for deployment in 2013.

As prime contributor to ESA, France is pursuing several significant space-based projects.

- France employs a new military satellite telecommunication system known as SYRACUSE-3, the purpose of which is simultaneously to link military command centers in France with several theaters of operation.

- Germany currently allocates €846 million ($1.35 billion) of governmental funds for space-related projects.

- Italy’s Agenzia Spaziale Italiana (ASI) is the third largest contributor to ESA.

- The United Kingdom’s space budget in 2006 was £207 million ($381 million), 65 percent of which was directed towards ESA-led projects.

- Japan has solid foundations for an effective wide-ranging space program and through existing and planned multilateral cooperative agreements and projects should gain an increasingly influential voice among the space powers of the world.

- India has been active in space-related activities since its national space agency, the Indian Space Research Organization (ISRO), was established in June 1972 and its first national satellite was launched into orbit in April 1975.

- India places great emphasis on attaining and maintaining an efficient and sophisticated series of satellites for television and radio broadcasting, telecommunications, and weather data.

- India has recently added as yet another focus in its space program the ability to conduct space exploration missions to the Moon, Mars, asteroids, and the Sun as well as indigenous technology for manned spaceflight.

- It remains to be seen whether India will eventually deploy military assets in space, although Indian military officials have announced the formation of an Aerospace Command.

- Due to Israel’s security situation in the Middle East, a very large part of Israeli space investment is directed towards defense—the Israel Space Agency (ISA) has an annual budget of around NIS 1 million ($280,000) for commercial purposes compared to a $50 million budget for the military space program.

- Foreign cooperation enables Israel to develop and conduct more sophisticated projects in space.

- Israel is and will continue to grow in the civilian and commercial spheres of space activity.

- The military sphere of Israeli space action is an area that is continuing to receive sufficient funding and will undoubtedly continue to grow in scope and sophistication.

- Israel has deployed a missile defense system, the Arrow, jointly developed with the United States. This system is being upgraded to cope with increasingly sophisticated threats.
Increasingly, space is viewed as an arena for commercial exploitation as well as a domain having military uses. Given the dual-use nature of technologies that will be available, the choices to exploit or not to take fullest advantages of such technologies for purely civilian or for their military advantages will be based on non-technological considerations.

- Given the likelihood that several states will wish to reduce or circumvent the U.S. lead in space, it follows that such entities will have a strong incentive to exploit available technologies.
- The ability to destroy or disable satellites from Earth, demonstrated by the Chinese in 2007, will eventually be available to others as a result of proliferating rocket and other technologies.

Given present trends, several important conclusions emerge from this net assessment:

- The wider availability of high-resolution imagery will lead to situations in which the United States could find itself fighting enemies with such capabilities at least at the outset of a conflict.
- Terrorists already have access to unprecedented high-resolution imagery that is available on the Internet. Together with states, and perhaps aided by states, such groups are already able to identify and gain detailed knowledge about their targets before, during, and after a military operation.
 - As a result, the ability that others will have to threaten or to inflict destruction on the United States will grow as a result of the proliferation of space technologies, products, and services, spurred by the commercial sector.
- The threat to the United States from missile proliferation will increase as more countries gain access to propulsion technologies and warhead designs.
 - Perhaps the ultimate asymmetrical strategy against the United States lies in the possibility of a nuclear detonation at an altitude between 40 and 400 kilometers designed both to disable and destroy U.S. satellites and to have devastating EMP effects against infrastructure on Earth.
 - Space represents an important arena from which to strike missiles carrying a payload intended to detonate above the Earth’s surface.
- Space will become an arena in which deployed assets must be protected.
- Given the inherent problem of defining a space weapon, it would probably be impossible to design a verifiable international treaty against such a capability.
 - The capability to attack a satellite need not be deployed in space to be able to achieve its intended result, as China demonstrated with its direct-ascent ground-based strike to destroy an aging Chinese satellite.
- Present trends clearly point to a world that by 2020 will have increasing numbers of states pursuing space programs capable of challenging the United States. Under such circumstances, the United States will have little alternative but to pursue as fully as possible space programs, both by itself and in collaborative ventures, both in the commercial and military sectors, if we are to remain in the forefront as a space faring nation.

For more information on the project and to download the entire report, visit:
http://www.ifpa.org/projects/space_missdef.htm