Building Multi-Party Capacity for a WMD-Free Korea: Verification, Dismantlement, and Ongoing Monitoring

Background memo for the IFPA Workshop “Building Multi-Party Capacity for a WMD-Free Korean Peninsula”

March 16-17, 2005
Shanghai, China

Prepared by:
Guillermo Pinczuk
Research Associate
Institute for Foreign Policy Analysis
Cambridge, MA and Washington, DC
www.ifpa.org

The memo contains information that was available as of March 2005
Introduction
The task of verifying and monitoring a freeze of North Korea’s nuclear programs, as well as verifying their full dismantlement and confirming the absence of undeclared nuclear material in the DPRK, has been complicated immeasurably since the collapse of the Agreed Framework in October 2002. Besides handling existing concerns regarding the full extent of North Korea’s pre-1994 plutonium production, a new verification and dismantlement regime will also have to determine the ultimate fate of the 8,000 spent fuel rods that were frozen by the 1994 accord, formulate an accurate picture of North Korea’s post-October 2002 plutonium production, and sequester the full amount of North Korea’s plutonium stockpile. It may also have to perform a related exercise with regard to a potential uranium enrichment program, of which very little is publicly known. The task of verifying North Korea’s nuclear disarmament to the fullest extent possible will undoubtedly require a number of years to complete.

At the same time, there are compelling reasons for an active six-party role in formulating and possibly implementing a new verification and dismantlement regime specific to the Korean Peninsula. First, a negotiated agreement within a six-party framework might be the only way to secure North Korean compliance with such a process. The IAEA’s Additional Protocol, for example, would allow for a more intrusive level of access to North Korean facilities and personnel than previously allowed, but North Korea has consistently refused to accept its provisions. North Korea might be willing to accept a regional verification system, however, since it would represent only a politically-binding commitment (and one in which it could theoretically play a role). Second, a new agreement with North Korea will likely involve significant economic and energy aid from Japan, China, and South Korea, as well as security guarantees from all parties, including the United States. For this reason, progress with nuclear dismantlement will be tightly connected to a regional package of incentives. Managing this connection between incentives and dismantlement suggests a vital regional component at some level.

The objective of this brief is to guide group discussions on the implementation of a verification and dismantlement regime for North Korea. In particular, the discussion should stem from this fundamental question: What role can and should the six-party process assume for implementing a negotiated verification and dismantlement regime with Pyongyang? How should one go about framing this discussion? The history of arms control, verification, and dismantlement activities provides a number of examples of potential roles for the six-party process, and it can help to establish a range or spectrum (from passive to active) of possible six-party involvement in the implementation phase of Korean denuclearization.

A somewhat passive approach could be to rely on either the IAEA or one (or more) of the six-party members to negotiate and implement a new verification regime with the DPRK, with a six-party organization limiting itself to a dispute resolution role. The United States took the lead role in dismantling Libya’s WMD programs, for example, and under this formula a six-party organization could simply provide a setting for resolving disputes.
One potential model for this role is the Joint Consultative Group (JCG), which was set up by the signatories of the Treaty on Conventional Armed Forces Europe (CFE) to resolve technical or data concerns relating to treaty interpretation and compliance.

Another option (somewhere in the middle of the passive-active spectrum) is for a six-party organization to carry out inspection and dismantlement duties in conjunction with the IAEA, with both organizations drawing independent conclusions and coordinating their activities. A model for this organizational type is the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC).

A more active option is for the six parties to assume full and sole responsibility for disarmament and ongoing monitoring activities, by establishing a KEDO-like organization for verification and disarmament. Under this option, the six parties would largely determine the rules of the verification regime, and manage the actual implementation. A minor alteration of this option would see the six parties establish an outside organization, perhaps patterned on the United Nations Monitoring, Verification and Inspection Commission (UNMOVIC), to undertake verification duties, with a six-party organization limiting itself to an oversight role.

Each of these options can be located along an active-passive continuum differentiated by the degree to which a six-party organization actively and independently sets the rules and implements a verification and disarmament regime. Examining each of these potential organizational models may shed light on the following questions: How can the six-party process best facilitate the implementation of a new verification regime for the DPRK? Should the group be an organizational entity, setting the rules for verification and actually carrying them out? Or should it restrict itself to a dispute-resolution function, while letting others undertake the actual verification and dismantlement tasks? Can its role change over time, perhaps playing a more active role in the establishment of detailed rules, protocols and procedures, and then becoming more passive during implementation? What relationship should the six-party group have with the IAEA and the UN? Should the six-party group instead focus on other tasks, such as conventional arms reduction on the Korean peninsula, while leaving nuclear dismantlement to other parties?

The following section will provide a brief synopsis of some of these organizational forms, highlighting their origins, their organizational structures, the key tasks they carried out, and their relationship with other international organizations. The final section of this brief will lay out some guiding discussion questions for the break-out group. These discussion topics stem from the question of what role the six-party process should adopt for the implementation of a verification agreement, especially with regard to (1) determining a functional identity with respect to verification and dismantlement; (2) setting goals, priorities, standards and procedures; (3) evaluating short-term implementation; (4) assessing long-term success and (5) forming relationships with other countries and international bodies.

A Passive Model – the Joint Consultative Group (JCG)
On November 19, 1990, twenty-two members of NATO and the Warsaw Pact signed the Treaty on Conventional Armed Forces in Europe (CFE). Negotiations commenced in Vienna in March 1989, lasted approximately twenty-one months, and the treaty went into force on July 17, 1992 after ratification by the parliaments of all signatories. During the interregnum the Soviet Union disintegrated, with eight of eleven former Soviet Republics having territory in Europe acceding to the treaty.\(^1\) The treaty imposed four sets of legally-binding obligations: detailed information exchange on treaty limited equipment\(^2\) (TLE) and on the signatories’ armed forces in the area of applicability (the Atlantic to the Urals, or ATTU); numerical ceilings on TLE that parties may possess in the ATTU; the reduction of a pre-determined amount of TLE according to procedures set forth in the treaty; and a verification regime, whereby each party was obligated to receive, and entitled to carry out, on-site inspections of military facilities in the ATTU.

The signatories established the JCG to handle technical questions of treaty interpretation and implementation. In particular, the JCG provided a forum for the signatories to:

- address questions related to compliance and circumvention;
- resolve ambiguities and differences of interpretation, and disputes about treaty implementation;
- update the lists of equipment subject to treaty oversight;
- consider and, if possible, agree on measures to enhance the viability and effectiveness of the treaty;
- work out or revise rules of procedure, working methods and the distribution of costs associated with inspections and the operation of the JCG;
- establish ways of ensuring that information provided under the treaty is not misused.

Furthermore, each State Party has the right to raise before the JCG, and place on its agenda, any issue relating to the treaty.

The JCG first met on November 29, 1990, and was composed of representatives designated by each member country, who were supported by alternates, advisors and experts. In principle, the JCG met twice yearly in Vienna for four-week periods, but in practice it was in continuous session throughout the 1990s. In the early 1990s, most JCG participants also worked on other issues while in Vienna, particularly CSCE activities related to Nagorno-Karabakh and Bosnia-Herzegovina.\(^3\) Expenses associated with the operation of the JCG were paid by all signatories, with the United States, the United Kingdom, Italy, Germany and France each paying 10.8 percent of the total expense. Smaller counties such as Armenia, Azerbaijan and Georgia each paid 0.2 percent of total costs. The chairmanship of the group rotated every two weeks, and at the end of each session the group established a provisional work program and a starting date for the next session. Each party had the right to include additional items in the work program of any session, and decisions within the JCG were reached by consensus.

\(^{1}\) The eight countries were Georgia, Moldova, Azerbaijan, Ukraine, Russia, Armenia, Belarus, and Kazakhstan.

\(^{2}\) There were five categories of TLE: tanks, armored combat vehicles, artillery, attack helicopters, and combat aircraft.

\(^{3}\) Arms Control Reporter 1994, p. 407.B.488
Within the CFE Treaty, legal authority and capacity for undertaking the various tasks associated with a “fact-finding” function, such as treaty-mandated information exchange and verification through inspections, rested with each signatory and not with a supranational body like the JCG. Each state party must provide to all other parties information on its conventional force structure and location of its objects of verification (i.e. sites open for inspection), and the individual states were allocated, and carried out, a specific number of inspections. Accordingly, organizational capacity for implementing the CFE Treaty resided with the signatories. Nations with the largest military forces and the most sites subject to inspection, such as the United States, France and Germany, set up separate verification agencies. For the United States, the On-Site Inspection Agency (OSIA), established in 1988 to implement the INF Treaty, was tasked in May 1990 with implementing the CFE Treaty, and it was also responsible for conducting on-site inspections under the Chemical Weapons Convention, the Strategic Arms Reduction Treaty, and various nuclear testing treaties. Within OSIA, 112 people were initially staffed to implement the CFE Treaty: fifteen inspection team chiefs and deputies, eighteen linguists, fourteen weapons specialists, and sixty-five other personnel responsible for planning, communications, logistics, transportation, command and control, and administration. From this total, the United States was able to establish seven complete CFE Treaty inspection teams and one partial team.

In October 1990, Germany established the Zentrum fur Verifikationsaufgaben der Bundeswehr (ZVBW) to implement the CFE Treaty as well as to undertake inspections associated with the confidence and security-building measures negotiated under the Vienna Document 1990. In the fall of 1990, the ZVBW had sixty-five officers and noncommissioned officers, and two years later it had four hundred. NATO nations with smaller forces and fewer inspection sites assigned CFE implementation duties to personnel within their respective national military commands. For instance, within the Dutch Ministry of Defense was a small arms control treaty coordination section. The Dutch Army had approximately eighty officers and NCOs trained as CFE inspectors, the Dutch Air Force had thirty-five, and the Navy had one.

Alliance structures like NATO did provide a framework for coordinating verification activities. In May 1990 NATO established the Verification Coordinating Committee (VCC) to coordinate among NATO members the implementation of the CFE Treaty. The VCC consisted of two representatives from each NATO member, and it met at NATO headquarters, and was supported by a small professional staff, the Verification and

5 OSIA was established as a separate operating agency reporting to the Under Secretary of Defense for Acquisition. It was incorporated into the Defense Threat Reduction Agency (DTRA) following the establishment of DTRA in 1998.
6 Harahan and Kuhn, “New National Verification Agencies”
7 CFE inspection teams were limited to nine individuals.
8 Harahan and Kuhn, “New National Verification Agencies”
9 Ibid
Implementation Coordinating Section. The VCC allocated inspection quotas to NATO members and coordinated their implementation to ensure maximum coverage. It also maintained a database, VERITY, which contained NATO nations’ annual military force data and information from inspection reports. These reports assisted NATO states in organizing and assessing data concerning treaty compliance. The VCC also supported NATO CFE Treaty courses to ensure a common approach to implementation. The VCC is potentially a useful model for a five-member subgroup within a six-party organization, whose purpose would be to set strategy for North Korean denuclearization and for coordinating economic benefits to the DPRK.

While the JCG was not endowed with a fact-finding role, it did provide a forum for consultation and dispute resolution. For instance, following the first data exchange, the West discovered that the USSR had reclassified a number of major military formations, subordinating them to the Soviet Navy to place them outside the scope of the treaty. While this and other initial Soviet compliance issues were ultimately resolved in a meeting between then-U.S. Secretary of State James Baker and his Soviet counterpart, preliminary discussions were carried out within the JCG. Most implementation measures, however, related to minor technical points raised during the course of an inspection, and if the matter was not settled bilaterally between the involved parties, the matter could be referred to the JCG Treaty Operation and Implementation Working Group for consideration. The JCG also enacted measures that ensured the smooth day-to-day implementation of the treaty. For instance, to alleviate the financial burden of states with significant TLE reduction liabilities, the JCG adopted new tank destruction procedures in July 1993.

The JCG can be located at the passive end of the active-passive continuum pertaining to organizational capacity and verification responsibilities. It possessed neither the capacity to undertake inspections, nor the authority to coordinate their implementation. Still, the JCG is worth considering because its decisions ensured the smooth day-to-day operations of the treaty, and it was often the site for debate on difficult treaty adaptation issues. For instance, a 1999 treaty adaptation agreement replaced the treaty’s bloc and zone limits with a system of national and territorial weapons ceilings, and the substance of this modification was developed within the JCG. Thus, the JCG represents an interesting organizational model. It facilitated discussion of both tactical day-to-day implementation issues as well as strategic issues related to the treaty’s fit with existing political conditions. And by serving largely as a forum for dispute resolution, a six-party organization can build a reputation for impartiality, which is necessary for its decisions to be viewed as legitimate.

The Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials
In a July 1991 agreement, the governments of Argentina and Brazil promised to use the nuclear material and facilities under their respective jurisdictions exclusively for peaceful purposes. In particular, both countries promised to refrain from carrying out, or participating in any way in: a) the testing, use, manufacture, production or acquisition by any means of any nuclear weapon; and b) the receipt, storage, installation, deployment or any other form of possession of any nuclear weapon. To verify that such obligations were

10 Beginning in mid-1994, members from the former WTO were also participating in VERITY.
Building Six-Party Capacity for a WMD-Free Korea
Verification, Dismantlement, and Ongoing Monitoring

indeed met, the two countries established the Brazilian-Argentina Agency for Accounting and Control of Nuclear Materials (ABACC). The ABACC was responsible for the administration and application of the Common System of Accounting and Control (SCCC), a full-scope safeguards system applied to all nuclear materials in both countries. In December 1991, the two countries, ABACC, and the IAEA signed the Quadripartite Agreement, which represented a joint safeguards agreement between the IAEA and Argentina and Brazil, and which set the parameters of cooperation between the ABACC and the IAEA. By increasing transparency with respect to the nuclear programs of two historical rivals, the ABACC has played an important role in ensuring stable relations between South America’s two largest countries. As a result, it represents an intriguing model for a future six-party organization contemplating a verification mission on the Korean Peninsula.

The headquarters of the ABACC is in Rio de Janeiro, and it has another office in Buenos Aires. In 2003 it had revenues of $2.8 million, mostly from the two participating governments, while its expenses were $2.4 million. The organization consists of a Commission and a Secretariat. The Commission has four members, with each country designating two members, and the Secretariat currently consists of ten professional staff, all appointed by the Commission. A senior staff member of the nationality of each party takes turns in serving as Secretary of the ABACC, thereby allowing a Brazilian to serve one year followed by an Argentine the next. The main task of the ABACC is to implement the SCCC, which consists of general procedures and application manuals for each category of facility. The application manuals provide guidelines for the verification regime, explaining in detail all of the accounting and control procedures to be used in each facility, stipulating the frequency and types of inspections scheduled, and also describing all the requirements that facilities operators must fulfill in terms of records, reports and measurements of nuclear materials.

The ABACC does have some institutional and legal capacity to carry out inspections. In 2003, it performed sixty-four inspections in Argentina and forty-four in Brazil, with inspectors from one country performing verification activities on the facilities of the other. To carry out these tasks, the two countries have made seventy inspectors available to the ABACC. Thus, in this case, a supranational organization is able to utilize capacity existing at the national level, and the July 1991 agreement provides the legal authority to call on such resources to carry out inspections. Article VIII of the agreement indicates that the powers of the ABACC shall be “to carry out inspections and other procedures required for implementation of the SCCC…to designate inspectors to carry out the inspections…,” and “to evaluate the inspections carried out in implementation of the SCCC.” And under Article XVI, the two parties are obligated to make technical capabilities available to the ABACC. Once designated, inspectors are responsible exclusively to the Secretariat while carrying out their duties assigned to them by that body.

The Secretariat evaluates the reports prepared by the inspectors. The Commission informs the party concerned if there is suspicion regarding the diversion or non-authorized use of nuclear materials, or if the inspectors were restricted in their attempts to determine the non-diversion or non-authorized use of nuclear materials. If the situation is not rectified and/or
settled by the two parties, the transgression may lead to a serious breach of the agreement. In this case, the other party is entitled to terminate the agreement or to suspend its application in whole or in part, and it is also responsible for advising the Secretary General of the United Nations and the Secretary General of the Organization of American States of the violation. In 2003, no event was detected to indicate the diversion of nuclear materials.

One of the more interesting features of the ABACCC is its relationship with the IAEA. Both organizations carry out inspections and draw independent conclusions, and they coordinate their activities to avoid unnecessary duplication of safeguards efforts. With respect to the latter, in 1997 both organizations worked together to produce a document, the “Guidelines for the Coordination of Routine and Ad-Hoc Inspection Activities between the Agency and ABACC,” to help coordinate their activities. Each year representatives from each organization meet in a Technical Subcommittee to discuss ways of improving the effectiveness and efficiency of the application of international and regional safeguards.

The IAEA does play an oversight role with respect to the safeguards applied by the ABACCC. For instance, the latter provides to the IAEA information on the inspection methods it intends to use, as well as the results of its inspections. On a monthly basis the ABACCC also furnishes inventory change reports, material balance reports, and physical inventory listings with respect to the facilities it has under safeguards. It also provides to the IAEA design information on facilities located in both countries. In this manner ABACCC has essentially interposed itself between the IAEA and two of its member countries, mediating the exchange of information from the latter to the IAEA. Communication runs in both directions, however, as the IAEA provides the ABACCC with the results of its inspections.

To enhance its technical capacity, the ABACCC has initiated a vigorous training program, as well as established partnerships with foreign nuclear energy agencies. In 2003, the ABACCC ran a number of workshops, including the “Basic Course on Safeguards for Inspectors,” a “Workshop for Training in Non-Announced Inspections,” a “Workshop on Contention, Surveillance and Verification of Nuclear Materials,” and a “Workshop on Physical Inventory Verification.” In the “Basic Course,” held in Buenos Aires, fourteen new ABACCC inspectors were trained, with the course covering a description of facilities and safeguards methods, and elaborating the procedures related to accounting reports and the auditing of records. During the “Workshop for Training in Non-Announced Inspections,” seven inspectors from the ABACCC and five from the IAEA were trained in the procedures and measures used during non-announced inspections of the enrichment plant at Aramar, Brazil.

In terms of institutional relationships, the ABACCC has a long-standing partnership with the U.S. Department of Energy (DOE), dating back to 1994. The agreement calls for both parties to exchange or loan materials, equipment, and components for evaluation and testing, and to undertake joint projects for research, development, testing, and evaluation with respect to verification activities. The agreement established a Permanent Coordinating Group (PCG) to implement the agreement, with both DOE and the ABACCC designating two officials to serve as representatives. Monies from the State Department’s
Non-proliferation and Disarmament Fund finances cooperative activities. One cooperative project funded by DOE and attended by inspectors and officers from the ABACC was the “Workshop on Control and Quality Assurance for Non-Destructive Analyses Instruments.”

The ABACC stands at the midpoint of the active-passive continuum. It does possess the legal authority and organizational capacity to undertake verification activities and associated rule-making, but the IAEA performs these functions as well. The key contribution to stability provided by the ABACC involves the high degree of transparency it affords into each party’s nuclear program. Through the ABACC, both Argentina and Brazil can peer into each other’s nuclear program and feel assured that the other’s nuclear intentions are peaceful. Such transparency necessitates a separate organization that functions as a repository of accessible information, accomplished by pooling sovereignty with respect to nuclear oversight. Information on the other’s nuclear program would obviously not be available through the hub-and-spoke relationship that the IAEA would normally maintain individually with Argentina and Brazil in the absence of the ABACC. Within the Korean context, a six-party verification organization modeled on the ABACC may be an appropriate vehicle for undertaking inspections on sensitive sights in both the North and South, and for serving as a repository of information gathered from such activities. With all countries, including North Korea, represented in the organization and overseeing such activities, a six-party verification organization may be able to establish trust and legitimacy in handling sensitive nuclear information, and in the process contribute to the building of confidence on the peninsula.

An Active Model - the United Nations Monitoring, Verification and Inspection Commission
UNMOVIC was created in December 1999 with the adoption of U.N. Security Council Resolution 1284. It replaced the former U.N. Special Commission on Iraq (UNSCOM), and it continued with the latter’s mandate to verify Iraq’s compliance with obligations to be rid of biological and chemical weapons, missiles with a range in excess of 150 kilometers, and any supporting infrastructure. UNMOVIC is an interesting, proactive verification model for several reasons. First, for several years, UNMOVIC essentially represented a capacity-in-waiting. UNSCOM inspectors were forced to withdraw in December 1998 to avoid American and British air-strikes undertaken to force Iraq to cooperate fully with its disarmament obligations. Inspectors, now from UNMOVIC, did not return to Iraq until November 2002. Given North Korea’s nuclear leverage, it is conceivable that it would not allow very extensive and sensitive verification and disarmament activities to proceed until several years after an agreement was reached (and greater mutual trust established). Second, UNMOVIC was responsible for both disarming Iraq and verifying that it never again reacquired the weapons prohibited to it by the Security Council. Hence, it represents an organizational model demonstrating how its component units can be employed synergistically to accomplish these two functions.

UNMOVIC consists of an Executive Chairman, his/her support office, an Administrative Service, and four main divisions – Technical Support and Training, Planning and Operations, Analysis and Assessment, and Information. A 16-member College of Commissions was also appointed to provide policy advice to the Executive Chairman, and
Building Six-Party Capacity for a WMD-Free Korea
Verification, Dismantlement, and Ongoing Monitoring

it met at least four times a year to consult with the Executive Chairman on the written quarterly reports submitted to the Security Council. Representatives of the IAEA and the Organization for the Prohibition of Chemical Weapons have also attended meetings as observers, and the College has held seventeen meetings since it first met in May 2000.

The Division of Planning and Operations plans and carries out all verification, monitoring and inspection activities, including proposing inspection sites, planning the goals and timing of inspections, and deciding the composition of inspection teams. It has four main units: biological weapons, chemical weapons, ballistic missiles, and multidisciplinary inspections and operations. The last group facilitated collaboration and the sharing of information for the three different types of WMD. The division also operated the Export/Import Joint Unit with the IAEA, which was responsible for verifying and monitoring any proscribed items by Iraq and investigating any dual-use items. It was also responsible for implementing the Reinforced Ongoing Monitoring and Verification (R-OMV) system. The latter included such tasks as the identification and designation of new sites; onsite inspections for verification and investigation; systematic sampling and analysis; and systematic inspections of underground facilities.

The Division of Information collects, processes and stores information from a variety of sources, including from UNSCOM and UNMOVIC inspectors, open sources, and overhead imagery and intelligence provided by UN member states. The Division of Analysis and Assessment was responsible for processing information to enable inspections, and for facilitating the R-OMV and assisting the Export/Import Joint Unit. It had the same four units as the Division of Planning and Operations, with each unit working with its counterpart to locate new inspection sites and evaluate Iraq’s compliance. Lastly, the Division of Technical Support and Training provided UNMOVIC with logistics, transport, communications and security services.

UNMOVIC was in Iraq for 111 days, from November 27, 2002 to March 17, 2003. It conducted 731 inspections at 411 sites. 219 inspections were performed by missile teams, 205 by biological teams, 161 by chemical teams and 146 by multidisciplinary teams. Thirty-eight percent of the sites visited were industrial sites, including food, medicine, ammunition, and missile-related production plants. Research and development sites constituted twenty-four percent of the sites visited, while military sites represented twelve percent. Most of the sites were around Baghdad and Mosul. A regional field office was in Mosul, while in the capital the Baghdad Ongoing Monitoring, Verification and Inspection Center (BOMVIC) was used by both UNMOVIC and the IAEA.

UNMOVIC was able to utilize the assets, archives and some of the personnel of UNSCOM, and unlike its predecessor it had several years to build capacity and prepare inspectors. For instance, it conducted advanced training courses focusing on biological, chemical and missile inspections. The first training course was in the summer of 2000 and included forty-four experts from nineteen countries. It conducted four more courses, and with the recruitment of forty-two professional core staff in New York, it was ready to initiate inspections on short notice by the end of 2002. It was also able to utilize the three-
A year waiting period to prioritize inspection sites and carefully analyze all of the information that UNSCOM had collected on Iraq’s WMD programs.

Another key difference between UNMOVIC and its predecessor is that UNMOVIC was structured so that it was less beholden to UN member nations. Whereas UNSCOM inspectors were on loan from national authorities and were paid by their home governments, UNMOVIC staff and inspectors were UN civil servants acting on behalf, and theoretically in the interest, of the global organization. Such independence might help facilitate trust on the part of North Korean authorities, since it makes it less likely that national intelligence agents will be able to infiltrate the verification organization. Furthermore, UNMOVIC trained its inspectors, whereas under UNSCOM training was the responsibility of national governments.

While independent, UNMOVIC was able to utilize capacity existing at the national level. UNMOVIC had access to color aerial images from American U-2 and French Mirage aircrafts. The digital imagery thus produced could be delivered to UNMOVIC headquarters in New York within hours. UNMOVIC also leased British, Canadian and Russian helicopters for aerial surveillance and for transporting inspectors throughout the country.

UNMOVIC is an interesting organizational model because it pursued a multidisciplinary approach to inspections. UNMOVIC intended to build an integrated verification system designed to pursue both disarmament and ongoing monitoring objectives. Although it was forced to leave Iraq prior to setting up the R-OMV, it intended to utilize on-site inspections, sample analysis, overhead surveillance, evaluation of documentation, interviews, and installed monitoring equipment to further both disarmament and ongoing verification activities. A key benefit from this synergistic approach is that information gathered from both activities could have been analyzed systematically and compared with other data.

Furthermore, UNMOVIC encouraged a holistic analysis of a country’s WMD programs, rather than a compartmentalized analysis focused on one aspect (e.g., chemical, biological, or nuclear) of a country’s programs. Multidisciplinary teams within the Division of Planning and Operations, and within the Division of Analysis and Assessment, were established in order to break down barriers that may have existed between personnel working on the different types of WMD. Its collaboration with the IAEA was designed to encourage this trend. Besides collaboration on the Export/Import Joint Unit and on BOMVIC, both organizations linked their databases to facilitate cross-disciplinary analysis.

UNMOVIC can be located on the active end of the active-passive continuum. It was an independent organization with accredited staff, and it had the organizational capacity to carry out verification activities and make independent judgments regarding Iraq’s compliance with its disarmament obligations. Yet, one cannot conclude an analysis of the appropriateness of the UNMOVIC model without at least briefly considering the context of its creation. UNMOVIC’s roots stem from Iraq’s invasion of Kuwait, its defeat in the Gulf
Building Six-Party Capacity for a WMD-Free Korea
Verification, Dismantlement, and Ongoing Monitoring

War, and numerous UN Security Council resolutions demanding Iraq’s WMD program dismantlement. Given the difference in Iraq’s and the DPRK’s situations, an UNMOVIC approach to Korean denuclearization may not really be feasible, but there might be components of its structure and operation that could inform future six-party discussions and initiatives.

Other Proposals
Each of the organizations detailed in this memo have something to contribute to the discussion about a future six-party verification organization. Other proposals have been suggested, and, due to space considerations, only a cursory description of them can be provided here. Seongwhun Cheon, of the Korea Institute for National Unification, has suggested the creation of a Korean Peninsula Agency for Nuclear Accounting and Control (KANAC), patterned on the ABACC model and as part of a four-step process culminating in the re-establishment of a verification regime in the DPRK.11 The first step involves implementing confidence building measures in order to build trust prior to restarting inspections. The second stage would see inter-Korean inspections of non-military nuclear sites, and the third stage would see the creation of KANAC. One crucial difference between ABACC and KANAC is that the latter would have the authority, independent of that of North or South Korea, to initiate inspections. KANAC would also include a Nuclear Material Supply Division (NMSD) to take control of all nuclear materials and equipment imported, exported, or produced by the two Koreas, and would distribute them to operators in both countries. In the last stage, the IAEA, KANAC, North Korea and South Korea would sign a quadrupartite regime.

Another proposal, this time involving the establishment of a regional verification regime consisting of the six parties as well as the IAEA, was put forward by John Olsen of Sandia National Laboratories.12 The organization would have the responsibility for verifying all present and future nuclear agreements for both North and South Korea, but the initial task of returning the DPRK to the NPT would rest with the IAEA.13 Furthermore, the five declared nuclear powers would lead efforts to dismantle North Korea’s nuclear weapons. Initially, the new organization could assist the IAEA in returning North Korea to the NPT, and perhaps concentrate on North Korea’s biological and chemical weapons, its conventional forces, and its missile programs. Once the organization matured, it would, like the ABACC, carry out safeguards inspections with the IAEA, and report NPT compliance on both Koreas to the IAEA.

As can be seen, both proposals draw heavily upon the ABACC model. KANAC is essentially the application of the ABACC model to the Korean peninsula, while the Olsen proposal would see a similar structure, except that the organization would include all members of the six-party process. One noteworthy aspect of the KANAC model is the

13 Under this proposal, the IAEA, rather than a new regional verification organization, would be responsible for clarifying the history of the Yongbyon radiochemistry facility.
lack of involvement of other countries in the region, as well as by extra-regional powers. For this reason, the KANAC model might not be a complete solution. China, Japan, Russia, and the United States are unlikely to agree to a new verification system that leaves them with little influence over the modalities and implementation of the regime. The Olsen proposal is more politically and operationally feasible, and it is also attractive given its approach toward the temporal considerations of a new verification regime. Initially, the new verification regime would be given time to build capacity and expertise, while the IAEA and the UN’s five permanent security council members took the lead in returning the DPRK to the NPT as a non-nuclear state. Once this initial stage was completed, and once the new organization matured, the latter would handle ongoing verification tasks for the two Koreas.

Questions/Topics for Consideration

• Should a six-party organization build capacity to undertake a verification mission? Or should it outsource this function to either (or both) international organizations or individual countries, and instead serve as a forum for technical dispute resolution and for the discussion of other issues pertaining to the implementation and evolution of an agreed settlement?

• If a verification organization is created, should its staff be employees of the organization, or should individual nations loan personnel to the organization? Should the organization have the authority to enter into legally-binding agreements? Should it have the authority to independently request inspections? How could it be funded?

• If verification capacity is established, what relationship should the organization have with the IAEA in terms of setting goals, priorities, standards and procedures for a new verification regime on the peninsula? Should the IAEA have oversight authority with regard to verifying the adequacy of the new regime?

• Should the verification and monitoring regime’s jurisdiction apply only to North Korea (if it does not accept the IAEA’s additional protocol), or should it apply to both North and South Korea equally?

• How should verification tasks be divided between a regional verification organization and the IAEA? Should both carry out inspections, and should they share the results with each other? Should both make independent evaluations regarding the non-diversion of nuclear materials and the absence of undeclared materials? How should disagreements regarding conflicting evaluations be resolved? Who is ultimately responsible for resolving future safeguards violations: the Security Council, individual nation states acting alone or with allies, or a six-party organization?

• Should a regional verification organization concentrate on chemical and biological weapons, as well as conventional and missile programs, while ceding to the IAEA complete authority over verifying the nuclear programs on the peninsula? Should such a division of responsibilities change over time? Should the principles of verification and monitoring apply to conventional arms as well as to WMD?
Building Six-Party Capacity for a WMD-Free Korea
Verification, Dismantlement, and Ongoing Monitoring

• Should North Korea be accepted as a full-fledged member of a regional verification organization right away, or should it participate in decision-making and oversight responsibilities only after it verifiably disarms and rejoins the NPT as a non-nuclear state?